scholarly journals RBM20 phosphorylation on serine/arginine domain is crucial to regulate pre-mRNA splicing and protein shuttling in the heart

2020 ◽  
Author(s):  
Mingming Sun ◽  
Yutong Jin ◽  
Chaoqun Zhu ◽  
Yanghai Zhang ◽  
Martin Liss ◽  
...  

AbstractMolecular and cellular mechanisms of mutations of splicing factors in heart function are not well understood. The splicing of precursor mRNA is dependent on an essential group of splicing factors containing serine-arginine (SR) domain(s) that are critical for protein-RNA and protein-protein interaction in the spliceosome assembly. Phosphorylation of SR domains plays a key role in splicing control and the distribution of splicing factors in the cell. RNA binding motif 20 (RBM20) is a splicing factor predominantly expressed in muscle tissues with the highest expression level in the heart. However, its phosphorylation status is completely unknown up-to-date. In this study, we identified sixteen amino acid residues that are phosphorylated by middle-down mass spectrometry. Four of them are located in the SR domain, and two out of the four residues, S638 and S640, play an essential role in splicing control and facilitate RBM20 shuttling from the nucleus to the cytoplasm. Re-localization of RBM20 promotes protein aggregation in the cytoplasm. We have also verified that SR-protein kinases (SRPKs), cdc2-like kinases (CLKs) and protein kinase B (PKB or AKT) phosphorylate S638 and S640. Mutations of S638A and S640G reduce RBM20 phosphorylation and disrupt the splicing. Taken together, we determine the phosphorylation status of RBM20 and provide the first evidence that phosphorylation on SR domain is crucial for pre-mRNA splicing and protein trafficking. Our findings reveal a new role of RBM20 via protein shuttling in cardiac function.

2010 ◽  
Vol 30 (7) ◽  
pp. 1718-1728 ◽  
Author(s):  
Ihab Younis ◽  
Michael Berg ◽  
Daisuke Kaida ◽  
Kimberly Dittmar ◽  
Congli Wang ◽  
...  

ABSTRACT Bioactive compounds have been invaluable for dissecting the mechanisms, regulation, and functions of cellular processes. However, very few such reagents have been described for pre-mRNA splicing. To facilitate their systematic discovery, we developed a high-throughput cell-based assay that measures pre-mRNA splicing by utilizing a quantitative reporter system with advantageous features. The reporter, consisting of a destabilized, intron-containing luciferase expressed from a short-lived mRNA, allows rapid screens (<4 h), thereby obviating the potential toxicity of splicing inhibitors. We describe three inhibitors (out of >23,000 screened), all pharmacologically active: clotrimazole, flunarizine, and chlorhexidine. Interestingly, none was a general splicing inhibitor. Rather, each caused distinct splicing changes of numerous genes. We further discovered the target of action of chlorhexidine and show that it is a selective inhibitor of specific Cdc2-like kinases (Clks) that phosphorylate serine-arginine-rich (SR) protein splicing factors. Our findings reveal unexpected activities of clinically used drugs in splicing and uncover differential regulation of constitutively spliced introns.


2021 ◽  
Vol 22 (21) ◽  
pp. 11618
Author(s):  
Anna L. Schorr ◽  
Marco Mangone

Alternative RNA splicing is an important regulatory process used by genes to increase their diversity. This process is mainly executed by specific classes of RNA binding proteins that act in a dosage-dependent manner to include or exclude selected exons in the final transcripts. While these processes are tightly regulated in cells and tissues, little is known on how the dosage of these factors is achieved and maintained. Several recent studies have suggested that alternative RNA splicing may be in part modulated by microRNAs (miRNAs), which are short, non-coding RNAs (~22 nt in length) that inhibit translation of specific mRNA transcripts. As evidenced in tissues and in diseases, such as cancer and neurological disorders, the dysregulation of miRNA pathways disrupts downstream alternative RNA splicing events by altering the dosage of splicing factors involved in RNA splicing. This attractive model suggests that miRNAs can not only influence the dosage of gene expression at the post-transcriptional level but also indirectly interfere in pre-mRNA splicing at the co-transcriptional level. The purpose of this review is to compile and analyze recent studies on miRNAs modulating alternative RNA splicing factors, and how these events contribute to transcript rearrangements in tissue development and disease.


2008 ◽  
Vol 19 (4) ◽  
pp. 1706-1716 ◽  
Author(s):  
Véronique Baldin ◽  
Muriel Militello ◽  
Yann Thomas ◽  
Christine Doucet ◽  
Weronika Fic ◽  
...  

In eukaryotic cells, proteasomes play an essential role in intracellular proteolysis and are involved in the control of most biological processes through regulated degradation of key proteins. Analysis of 20S proteasome localization in human cell lines, using ectopic expression of its CFP-tagged α7 subunit, revealed the presence in nuclear foci of a specific and proteolytically active complex made by association of the 20S proteasome with its PA28γ regulator. Identification of these foci as the nuclear speckles (NS), which are dynamic subnuclear structures enriched in splicing factors (including the SR protein family), prompted us to analyze the role(s) of proteasome-PA28γ complexes in the NS. Here, we show that knockdown of these complexes by small interfering RNAs directed against PA28γ strongly impacts the organization of the NS. Further analysis of PA28γ-depleted cells demonstrated an alteration of intranuclear trafficking of SR proteins. Thus, our data identify proteasome-PA28γ complexes as a novel regulator of NS organization and function, acting most likely through selective proteolysis. These results constitute the first demonstration of a role of a specific proteasome complex in a defined subnuclear compartment and suggest that proteolysis plays important functions in the precise control of splicing factors trafficking within the nucleus.


1998 ◽  
Vol 143 (2) ◽  
pp. 297-307 ◽  
Author(s):  
Tom Misteli ◽  
Javier F. Cáceres ◽  
Jade Q. Clement ◽  
Adrian R. Krainer ◽  
Miles F. Wilkinson ◽  
...  

Expression of most RNA polymerase II transcripts requires the coordinated execution of transcription, splicing, and 3′ processing. We have previously shown that upon transcriptional activation of a gene in vivo, pre-mRNA splicing factors are recruited from nuclear speckles, in which they are concentrated, to sites of transcription (Misteli, T., J.F. Cáceres, and D.L. Spector. 1997. Nature. 387:523–527). This recruitment process appears to spatially coordinate transcription and pre-mRNA splicing within the cell nucleus. Here we have investigated the molecular basis for recruitment by analyzing the recruitment properties of mutant splicing factors. We show that multiple protein domains are required for efficient recruitment of SR proteins from nuclear speckles to nascent RNA. The two types of modular domains found in the splicing factor SF2/ ASF exert distinct functions in this process. In living cells, the RS domain functions in the dissociation of the protein from speckles, and phosphorylation of serine residues in the RS domain is a prerequisite for this event. The RNA binding domains play a role in the association of splicing factors with the target RNA. These observations identify a novel in vivo role for the RS domain of SR proteins and suggest a model in which protein phosphorylation is instrumental for the recruitment of these proteins to active sites of transcription in vivo.


1995 ◽  
Vol 15 (11) ◽  
pp. 6273-6282 ◽  
Author(s):  
X Peng ◽  
S M Mount

SR proteins are essential for pre-mRNA splicing in vitro, act early in the splicing pathway, and can influence alternative splice site choice. Here we describe the isolation of both dominant and loss-of-function alleles of B52, the gene for a Drosophila SR protein. The allele B52ED was identified as a dominant second-site enhancer of white-apricot (wa), a retrotransposon insertion in the second intron of the eye pigmentation gene white with a complex RNA-processing defect. B52ED also exaggerates the mutant phenotype of a distinct white allele carrying a 5' splice site mutation (wDR18), and alters the pattern of sex-specific splicing at doublesex under sensitized conditions, so that the male-specific splice is favored. In addition to being a dominant enhancer of these RNA-processing defects, B52ED is a recessive lethal allele that fails to complement other lethal alleles of B52. Comparison of B52ED with the B52+ allele from which it was derived revealed a single change in a conserved amino acid in the beta 4 strand of the first RNA-binding domain of B52, which suggests that altered RNA binding is responsible for the dominant phenotype. Reversion of the B52ED dominant allele with X rays led to the isolation of a B52 null allele. Together, these results indicate a critical role for the SR protein B52 in pre-mRNA splicing in vivo.


1998 ◽  
Vol 140 (4) ◽  
pp. 737-750 ◽  
Author(s):  
Huan-You Wang ◽  
Wen Lin ◽  
Jacqueline A. Dyck ◽  
Joanne M. Yeakley ◽  
Zhou Songyang ◽  
...  

Abstract. Reversible phosphorylation plays an important role in pre-mRNA splicing in mammalian cells. Two kinases, SR protein-specific kinase (SRPK1) and Clk/Sty, have been shown to phosphorylate the SR family of splicing factors. We report here the cloning and characterization of SRPK2, which is highly related to SRPK1 in sequence, kinase activity, and substrate specificity. Random peptide selection for preferred phosphorylation sites revealed a stringent preference of SRPK2 for SR dipeptides, and the consensus derived may be used to predict potential phosphorylation sites in candidate arginine and serine-rich (RS) domain–containing proteins. Phosphorylation of an SR protein (ASF/SF2) by either SRPK1 or 2 enhanced its interaction with another RS domain–containing protein (U1 70K), and overexpression of either kinase induced specific redistribution of splicing factors in the nucleus. These observations likely reflect the function of the SRPK family of kinases in spliceosome assembly and in mediating the trafficking of splicing factors in mammalian cells. The biochemical and functional similarities between SRPK1 and 2, however, are in contrast to their differences in expression. SRPK1 is highly expressed in pancreas, whereas SRPK2 is highly expressed in brain, although both are coexpressed in other human tissues and in many experimental cell lines. Interestingly, SRPK2 also contains a proline-rich sequence at its NH2 terminus, and a recent study showed that this NH2-terminal sequence has the capacity to interact with a WW domain protein in vitro. Together, our studies suggest that different SRPK family members may be uniquely regulated and targeted, thereby contributing to splicing regulation in different tissues, during development, or in response to signaling.


2020 ◽  
Author(s):  
Lisa M. Strittmatter ◽  
Charlotte Capitanchik ◽  
Andrew J. Newman ◽  
Martina Hallegger ◽  
Christine M. Norman ◽  
...  

AbstractEight RNA helicases remodel the spliceosome to effect pre-mRNA splicing but their mechanism of action remains poorly understood. We have developed “purified spliceosome iCLIP” (psiCLIP) to define helicase-RNA contacts in specific spliceosomal states. psiCLIP reveals previously unappreciated dynamics of spliceosomal helicases. The binding profile of the helicase Prp16 is influenced by the distance between the branch-point and 3’ splice site, while Prp22 binds diffusely on the intron before exon ligation but switches to more narrow binding downstream of the exon junction after exon ligation. Notably, depletion of the exon-ligation factor Prp18 destabilizes Prp22 binding to the pre-mRNA, demonstrating that psiCLIP can be used to study the relationships between helicases and auxiliary splicing factors. Thus, psiCLIP is sensitive to spliceosome dynamics and complements the insights from structural and imaging studies by providing crucial positional information on helicase-RNA contacts during spliceosomal remodeling.


2019 ◽  
Author(s):  
Kensuke Ninomiya ◽  
Shungo Adachi ◽  
Tohru Natsume ◽  
Junichi Iwakiri ◽  
Goro Terai ◽  
...  

AbstractA number of long noncoding RNAs (lncRNAs) are induced in response to specific stresses to construct membrane-less nuclear bodies; however, their function remains poorly understood. Here, we report the role of nuclear stress bodies (nSBs) formed on highly repetitive satellite III (HSATIII) lncRNAs derived from primate-specific satellite III repeats upon thermal stress exposure. A transcriptomic analysis revealed that depletion of HSATIII lncRNAs, resulting in elimination of nSBs, promoted splicing of 533 retained introns during thermal stress recovery. A HSATIII-Comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) analysis identified multiple splicing factors in nSBs, including serine and arginine-rich pre-mRNA splicing factors (SRSFs), the phosphorylation states of which affect splicing patterns. SRSFs are rapidly dephosphorylated upon thermal stress exposure. During stress recovery, CDC like kinase 1 (CLK1) was recruited to nSBs and accelerated the re-phosphorylation of SRSF9, thereby promoting target intron retention. Our findings suggest that HSATIII-dependent nSBs serve as a conditional platform for phosphorylation of SRSFs by CLK1 to promote the rapid adaptation of gene expression through intron retention following thermal stress exposure.


1998 ◽  
Vol 18 (2) ◽  
pp. 676-684 ◽  
Author(s):  
Wan-Jiang Zhang ◽  
Jane Y. Wu

ABSTRACT Previous studies have shown that protein-protein interactions among splicing factors may play an important role in pre-mRNA splicing. We report here identification and functional characterization of a new splicing factor, Sip1 (SC35-interacting protein 1). Sip1 was initially identified by virtue of its interaction with SC35, a splicing factor of the SR family. Sip1 interacts with not only several SR proteins but also with U1-70K and U2AF65, proteins associated with 5′ and 3′ splice sites, respectively. The predicted Sip1 sequence contains an arginine-serine-rich (RS) domain but does not have any known RNA-binding motifs, indicating that it is not a member of the SR family. Sip1 also contains a region with weak sequence similarity to the Drosophila splicing regulator suppressor of white apricot (SWAP). An essential role for Sip1 in pre-mRNA splicing was suggested by the observation that anti-Sip1 antibodies depleted splicing activity from HeLa nuclear extract. Purified recombinant Sip1 protein, but not other RS domain-containing proteins such as SC35, ASF/SF2, and U2AF65, restored the splicing activity of the Sip1-immunodepleted extract. Addition of U2AF65 protein further enhanced the splicing reconstitution by the Sip1 protein. Deficiency in the formation of both A and B splicing complexes in the Sip1-depleted nuclear extract indicates an important role of Sip1 in spliceosome assembly. Together, these results demonstrate that Sip1 is a novel RS domain-containing protein required for pre-mRNA splicing and that the functional role of Sip1 in splicing is distinct from those of known RS domain-containing splicing factors.


Sign in / Sign up

Export Citation Format

Share Document