scholarly journals Aberrant Epithelial Differentiation Contributes to Pathogenesis in a Murine Model of Congenital Tufting Enteropathy

2020 ◽  
Author(s):  
Barun Das ◽  
Kevin Okamoto ◽  
John Rabalais ◽  
Jocelyn Young ◽  
Kim E. Barrett ◽  
...  

AbstractBackground & AimsCongenital Tufting Enteropathy (CTE) is an intractable diarrheal disease of infancy caused by mutation of Epithelial Cell Adhesion Molecule (EpCAM). The cellular and molecular basis of CTE pathology has been elusive. We hypothesized that the loss of EpCAM in CTE results in altered lineage differentiation and defects in absorptive enterocytes thereby contributing to CTE pathogenesis.MethodsIntestine from CTE mice was evaluated for specific markers by RT-qPCR, western blotting and immunostaining. Body weight, blood glucose and intestinal enzyme activity were also investigated. A CTE enteroid model was used to assess whether the decreased census of secretory cells could be rescued.ResultsCTE mice exhibited alterations in brush-border function, disaccharidase activity and glucose absorption, potentially contributing to nutrient malabsorption and impaired weight gain. Altered cell differentiation in CTE mice led to decreased secretory cells and increased numbers of absorptive cells, though the absorptive enterocytes lacked key features, causing brush border malfunction. Further, treatment with Notch signaling inhibitor, DAPT, increased the numbers of major secretory cell types in CTE enteroids (Graphical abstract 1).ConclusionsAlterations in intestinal epithelial cell differentiation in CTE mice favor an increase in absorptive cells at the expense of secretory cells. Although the proportion of absorptive enterocytes is increased, they lack key functional properties. We conclude that these effects underlie pathogenic features of CTE such as malabsorption and diarrhea, and ultimately the failure to thrive seen in patients. The ability of DAPT to reverse aberrant differentiation suggests a possible therapeutic strategy.SynopsisA murine model of Congenital Tufting Enteropathy exhibits altered intestinal cell differentiation, leading to increased absorptive and decreased secretory cells, which can be reversed with DAPT. Absorptive enterocytes in these mice are also dysfunctional, contributing to disease pathogenesis.Graphical Abstract

1992 ◽  
Vol 102 (3) ◽  
pp. 581-600 ◽  
Author(s):  
M.D. Peterson ◽  
M.S. Mooseker

The brush border (BB) of the enterocyte is a well-studied example of the actin-based cytoskeleton. We describe here a cell culture model that expresses a faithful representation of the in vivo structure. Two clones (C2BBe 1 and 2) isolated from the cell line Caco-2 (derived from a human colonic adenocarcinoma) formed a polarized monolayer with an apical BB morphologically comparable to that of the human colon. BBs could be isolated by standard methods and contained the microvillar proteins villin, fimbrin, sucrase-isomaltase and BB myosin I, and the terminal web proteins fodrin and myosin II. The immunolocalization of these proteins in confluent, filter-grown monolayers was determined by laser scanning confocal microscopy; patterns of distribution comparable to those in human enterocytes were observed. Sedimentation analysis of cell homogenates derived from C2BBe cells and human colonic epithelial cells demonstrated similar patterns of fractionation of BB proteins; the physical association of those proteins, as determined by extraction from the BB, was also comparable between the two cell types. Like enterocytes of the human intestine, C2BBe cells expressed multiple myosin I immunogens reactive with a head domain-specific monoclonal antibody raised against avian BB myosin I, one of which co-migrated with the approximately 110 kilodalton (kDa) heavy chain of human BB myosin I. In addition, the C2BBe cells express a pair of higher molecular mass immunogens (130 and 140 kDa). These myosin I immunogens all exhibit ATP-dependent association with the C2BBe cytoskeleton. Although the higher molecular mass immunogens were detected in several other human intestinal lines examined, including the parent Caco-2 line, none of these other lines expressed detectable levels of the 110 kDa immunogen, which is presumed to be the heavy chain of human BB myosin I.


Parasitology ◽  
1971 ◽  
Vol 63 (3) ◽  
pp. 483-489 ◽  
Author(s):  
Trevor A. J. Reader

The uninfected digestive gland of Bithynia tentaculata consists of three main cell types: ‘absorptive’ cells, ‘thin’ cells and ‘secretory’ cells. With infection by sporocysts, rediae, or metacercaria, pressure effects caused a reduction in the lumen of the digestive gland tubules and this probably resulted in a starvation autolysis. Some tubules recovered from infection and in such cases there was a reduction in the height of the epithelium. A migration of the digestive gland nuclei was only evident in redial infections and this may have been due to the toxic effects of rediae. In addition, rediae directly ingested host digestive gland tissue.The digestive gland was reduced to about two-thirds of its normal size in all heavily infected snails. Secretory cells of the gland were more resistant to infection than were the absorptive or thin cells.I am indebted to Dr F. R. Stranack for her supervision and guidance throughout this investigation, and to Dr G. Charles and Dr T. Jenkins for their continued help and advice. This study was carried out during the tenure of a Research Assistantship awarded by the Governors of Portsmouth Polytechnic.


2009 ◽  
Vol 22 (2) ◽  
pp. 349-369 ◽  
Author(s):  
Cynthia L. Sears

SUMMARY Enterotoxigenic Bacteroides fragilis (ETBF) strains are strains of B. fragilis that secrete a 20-kDa heat-labile zinc-dependent metalloprotease toxin termed the B. fragilis toxin (BFT). BFT is the only recognized virulence factor specific for ETBF. ETBF strains are associated with inflammatory diarrheal disease in children older than 1 year of age and in adults; limited data suggest an association of ETBF colonization with inflammatory bowel disease flare-ups and colorectal cancer. ETBF secretes one of three highly related BFT isoforms. The relationship between BFT isoform and disease expression is unknown. Although the mechanism of action of BFT is incompletely understood, available data suggest that BFT binds to a specific intestinal epithelial cell receptor, stimulating intestinal cell signal transduction pathways that result in cell morphology changes, cleavage of E-cadherin, reduced colonic barrier function, and increased epithelial cell proliferation and cytokine expression (such as the proinflammatory chemokine interleukin-8). Together, the data suggest that in some hosts, ETBF acts via secretion of BFT to induce colitis. However, the full spectrum of clinical disease related to ETBF and the impact of chronic ETBF colonization on the host remain to be defined.


2019 ◽  
Author(s):  
Nicholas Pervolarakis ◽  
Quy H. Nguyen ◽  
Guadalupe Gutierrez ◽  
Peng Sun ◽  
Darisha Jhutty ◽  
...  

ABSTRACTThe mammary epithelial cell (MEC) system is a bi-layered ductal epithelial network consisting of luminal and basal cells, which is maintained by a lineage of stem and progenitor cell populations. Here, we used integrated single-cell transcriptomics and chromatin accessibility analysis to reconstruct the cell types of the mouse MEC system and their underlying gene regulatory features in an unbiased manner. We define previously unrealized differentiation states within the secretory type of luminal cells, which can be divided into distinct clusters of progenitor and mature secretory cells. By integrating single-cell transcriptomics and chromatin accessibility landscapes, we identified novel cis- and trans-regulatory elements that are differentially activated in the specific epithelial cell types and our newly defined luminal differentiation states. Our work provides an unprecedented resource to reveal novel cis/trans regulatory elements associated with MEC identity and differentiation that will serve as a valuable reference to determine how the chromatin accessibility landscape changes during breast cancer.


Author(s):  
G.M. Vernon ◽  
A. Surace ◽  
R. Witkus

The hepatopancreas consists of a pair of bilobed tubules comprised of two epithelial cell types. S cells are absorptive and accumulate metals such as copper and zinc. Ca++ concentrations vary between the S and B cells and during the molt cycle. Roer and Dillaman implicated Ca++-ATPase in calcium transport during molting in Carcinus maenas. This study was undertaken to compare the localization of Ca++-ATPase activity in the S and B cells during intermolt.


Author(s):  
S. Tai

Extensive cytological and histological research, correlated with physiological experimental analysis, have been done on the anterior pituitaries of many different vertebrates which have provided the knowledge to create the concept that specific cell types synthesize, store and release their specific hormones. These hormones are stored in or associated with granules. Nevertheless, there are still many doubts - that need further studies, specially on the ultrastructure and physiology of these endocrine cells during the process of synthesis, transport and secretion, whereas some new methods may provide the information about the intracellular structure and activity in detail.In the present work, ultrastructural study of the hormone-secretory cells of chicken pituitaries have been done by using TEM as well as HR-SEM, to correlate the informations obtained from 2-dimensional TEM micrography with the 3-dimensional SEM topographic images, which have a continous surface with larger depth of field that - offers the adventage to interpretate some intracellular structures which were not possible to see using TEM.


Sign in / Sign up

Export Citation Format

Share Document