scholarly journals Subcellular relocalization and nuclear redistribution of the RNA methyltransferases TRMT1 and TRMT1L upon neuronal activation

2020 ◽  
Author(s):  
Nicky Jonkhout ◽  
Sonia Cruciani ◽  
Helaine Graziele Santos Vieira ◽  
Julia Tran ◽  
Huanle Liu ◽  
...  

ABSTRACTRNA modifications are dynamic chemical entities that regulate RNA fate, and an avenue for environmental response in neuronal function. However, which RNA modifications may be playing a role in neuronal plasticity and environmental responses is largely unknown. Here we characterize the biochemical function and cellular dynamics of two human RNA methyltransferases previously associated with neurological dysfunction, TRMT1 and its homolog, TRMT1-like (TRMT1L). Using a combination of next-generation sequencing, LC-MS/MS, patient-derived cell lines and knockout mouse models, we confirm the previously reported dimethylguanosine (m 2,2 G) activity of TRMT1 in tRNAs, as well as reveal that TRMT1L, whose activity was unknown, is responsible for methylating a subset of cytosolic tRNA Ala (AGC) isoacceptors at position 26. Using a cellular in vitro model that mimics neuronal activation and long term potentiation, we find that both TRMT1 and TRMT1L change their subcellular localization upon neuronal activation. Specifically, we observe a major subcellular relocalization from mitochondria and other cytoplasmic domains (TRMT1) and nucleoli (TRMT1L) to different small punctate compartments in the nucleus, which are as yet uncharacterized. This phenomenon does not occur upon heat shock, suggesting that the relocalization of TRMT1 and TRMT1L is not a general reaction to stress, but rather a specific response to neuronal activation. Our results suggest that subcellular relocalization of RNA modification enzymes play a role in neuronal plasticity and transmission of information, presumably by addressing new targets.

2020 ◽  
Vol 48 (19) ◽  
pp. e110-e110 ◽  
Author(s):  
Virginie Marchand ◽  
Florian Pichot ◽  
Paul Neybecker ◽  
Lilia Ayadi ◽  
Valérie Bourguignon-Igel ◽  
...  

Abstract Developing methods for accurate detection of RNA modifications remains a major challenge in epitranscriptomics. Next-generation sequencing-based mapping approaches have recently emerged but, often, they are not quantitative and lack specificity. Pseudouridine (ψ), produced by uridine isomerization, is one of the most abundant RNA modification. ψ mapping classically involves derivatization with soluble carbodiimide (CMCT), which is prone to variation making this approach only semi-quantitative. Here, we developed ‘HydraPsiSeq’, a novel quantitative ψ mapping technique relying on specific protection from hydrazine/aniline cleavage. HydraPsiSeq is quantitative because the obtained signal directly reflects pseudouridine level. Furthermore, normalization to natural unmodified RNA and/or to synthetic in vitro transcripts allows absolute measurements of modification levels. HydraPsiSeq requires minute amounts of RNA (as low as 10–50 ng), making it compatible with high-throughput profiling of diverse biological and clinical samples. Exploring the potential of HydraPsiSeq, we profiled human rRNAs, revealing strong variations in pseudouridylation levels at ∼20–25 positions out of total 104 sites. We also observed the dynamics of rRNA pseudouridylation throughout chondrogenic differentiation of human bone marrow stem cells. In conclusion, HydraPsiSeq is a robust approach for the systematic mapping and accurate quantification of pseudouridines in RNAs with applications in disease, aging, development, differentiation and/or stress response.


2021 ◽  
Author(s):  
Pavel Kudrin ◽  
David Meierhofer ◽  
Cathrine Broberg Vågbø ◽  
Ulf Andersson Vang Ørom

AbstractA large number of RNA modifications are known to affect processing and function of rRNA, tRNA and mRNA 1. The N4-acetylcytidine (ac4C) is the only known RNA acetylation event and is known to occur on rRNA, tRNA and mRNA 2,3. RNA modification by acetylation affects a number of biological processes, including translation and RNA stability 2. For a few RNA methyl modifications, a reversible nature has been demonstrated where specific writer proteins deposit the modification and eraser proteins can remove them by oxidative demethylation 4–6. The functionality of RNA modifications is often mediated by interaction with reader proteins that bind dependent on the presence of specific modifications 1. The NAT10 acetyltransferase has been firmly identified as the main writer of acetylation of cytidine ribonucleotides, but so far neither readers nor erasers of ac4C have been identified 2,3. Here we show, that ac4C is bound by the nucleolar protein NOP58 and deacetylated by SIRT7, for the first time demonstrating reversal by another mechanism than oxidative demethylation. NOP58 and SIRT7 are involved in snoRNA function and pre-ribosomal RNA processing 7–10, and using a NAT10 deficient cell line we can show that the reduction in ac4C levels affects both snoRNA sub-nuclear localization and pre-rRNA processing. SIRT7 can deacetylate RNA in vitro and endogenous levels of ac4C on snoRNA increase in a SIRT7 deficient cell line, supporting its endogenous function as an RNA deacetylase. In summary, we identify the first eraser and reader proteins of the RNA modification ac4C, respectively, and suggest an involvement of RNA acetylation in snoRNA function and pre-rRNA processing.


Genetics ◽  
1998 ◽  
Vol 149 (3) ◽  
pp. 1465-1475 ◽  
Author(s):  
T Kozlova ◽  
G V Pokholkova ◽  
G Tzertzinis ◽  
J D Sutherland ◽  
I F Zhimulev ◽  
...  

Abstract DHR38 is a member of the steroid receptor superfamily in Drosophila homologous to the vertebrate NGFI-B-type orphan receptors. In addition to binding to specific response elements as a monomer, DHR38 interacts with the USP component of the ecdysone receptor complex in vitro, in yeast and in a cell line, suggesting that DHR38 might modulate ecdysone-triggered signals in the fly. We characterized the molecular structure and expression of the Dhr38 gene and initiated an in vivo analysis of its function(s) in development. The Dhr38 transcription unit spans more than 40 kb in length, includes four introns, and produces at least four mRNA isoforms differentially expressed in development; two of these are greatly enriched in the pupal stage and encode nested polypeptides. We characterized four alleles of Dhr38: a P-element enchancer trap line, l(2)02306, which shows exclusively epidermal staining in the late larval, pre-pupal and pupal stages, and three EMS-induced alleles. Dhr38 alleles cause localized fragility and rupturing of the adult cuticle, demonstrating that Dhr38 plays an important role in late stages of epidermal metamorphosis.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jie Yu ◽  
Peiwei Chai ◽  
Minyue Xie ◽  
Shengfang Ge ◽  
Jing Ruan ◽  
...  

Abstract Background Histone lactylation, a metabolic stress-related histone modification, plays an important role in the regulation of gene expression during M1 macrophage polarization. However, the role of histone lactylation in tumorigenesis remains unclear. Results Here, we show histone lactylation is elevated in tumors and is associated with poor prognosis of ocular melanoma. Target correction of aberrant histone lactylation triggers therapeutic efficacy both in vitro and in vivo. Mechanistically, histone lactylation contributes to tumorigenesis by facilitating YTHDF2 expression. Moreover, YTHDF2 recognizes the m6A modified PER1 and TP53 mRNAs and promotes their degradation, which accelerates tumorigenesis of ocular melanoma. Conclusion We reveal the oncogenic role of histone lactylation, thereby providing novel therapeutic targets for ocular melanoma therapy. We also bridge histone modifications with RNA modifications, which provides novel understanding of epigenetic regulation in tumorigenesis.


2015 ◽  
Vol 210 (5) ◽  
pp. 771-783 ◽  
Author(s):  
Norbert Bencsik ◽  
Zsófia Szíber ◽  
Hanna Liliom ◽  
Krisztián Tárnok ◽  
Sándor Borbély ◽  
...  

Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.


Author(s):  
Tong He ◽  
Huanping Guo ◽  
Xipeng Shen ◽  
Xiao Wu ◽  
Lin Xia ◽  
...  

Abstract Hypobaric hypoxia as an extreme environment in a plateau may have deleterious effects on human health. Studies have indicated that rush entry into a plateau may reduce male fertility and manifest in decreased sperm counts and weakened sperm motility. RNA modifications are sensitive to environmental changes and have recently emerged as novel post-transcriptional regulators in male spermatogenesis and intergenerational epigenetic inheritance. In the present study, we generated a mouse hypoxia model simulating the environment of 5500 meters in altitude for 35 days, which led to compromised spermatogenesis, decreased sperm counts, and an increased sperm deformation rate. Using this hypoxia model, we further applied our recently developed high-throughput RNA modification quantification platform based on LC–MS/MS, which exhibited the capacity to simultaneously examine 25 types of RNA modifications. Our results revealed an altered sperm RNA modifications signature in the testis (6 types) and mature sperm (11 types) under the hypoxia model, with 4 types showing overlap (Am, Gm, m7G, and m22G). Our data first drew the signature of RNA modification profiles and comprehensively analyzed the alteration of RNA modification levels in mouse testis and sperm under a mouse hypoxia model. These data may be highly related to human conditions under a similar hypoxia environment.


2016 ◽  
Vol 27 (8) ◽  
pp. 849-855 ◽  
Author(s):  
Nickolay K. Isaev ◽  
Elena V. Stelmashook ◽  
Elisaveta E. Genrikhs ◽  
Galina A. Korshunova ◽  
Natalya V. Sumbatyan ◽  
...  

AbstractIn 2008, using a model of compression brain ischemia, we presented the first evidence that mitochondria-targeted antioxidants of the SkQ family, i.e. SkQR1 [10-(6′-plastoquinonyl)decylrhodamine], have a neuroprotective action. It was shown that intraperitoneal injections of SkQR1 (0.5–1 μmol/kg) 1 day before ischemia significantly decreased the damaged brain area. Later, we studied in more detail the anti-ischemic action of this antioxidant in a model of experimental focal ischemia provoked by unilateral intravascular occlusion of the middle cerebral artery. The neuroprotective action of SkQ family compounds (SkQR1, SkQ1, SkQTR1, SkQT1) was manifested through the decrease in trauma-induced neurological deficit in animals and prevention of amyloid-β-induced impairment of long-term potentiation in rat hippocampal slices. At present, most neurophysiologists suppose that long-term potentiation underlies cellular mechanisms of memory and learning. They consider inhibition of this process by amyloid-β1-42as anin vitromodel of memory disturbance in Alzheimer’s disease. Further development of the above studies revealed that mitochondria-targeted antioxidants could retard accumulation of hyperphosphorylated τ-protein, as well as amyloid-β1-42, and its precursor APP in the brain, which are involved in developing neurodegenerative processes in Alzheimer’s disease.


Genes ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 619
Author(s):  
Etienne Boileau ◽  
Christoph Dieterich

RNA modifications regulate the complex life of transcripts. An experimental approach called LAIC-seq was developed to characterize modification levels on a transcriptome-wide scale. In this method, the modified and unmodified molecules are separated using antibodies specific for a given RNA modification (e.g., m6A). In essence, the procedure of biochemical separation yields three fractions: Input, eluate, and supernatent, which are subjected to RNA-seq. In this work, we present a bioinformatics workflow, which starts from RNA-seq data to infer gene-specific modification levels by a statistical model on a transcriptome-wide scale. Our workflow centers around the pulseR package, which was originally developed for the analysis of metabolic labeling experiments. We demonstrate how to analyze data without external normalization (i.e., in the absence of spike-ins), given high efficiency of separation, and how, alternatively, scaling factors can be derived from unmodified spike-ins. Importantly, our workflow provides an estimate of uncertainty of modification levels in terms of confidence intervals for model parameters, such as gene expression and RNA modification levels. We also compare alternative model parametrizations, log-odds, or the proportion of the modified molecules and discuss the pros and cons of each representation. In summary, our workflow is a versatile approach to RNA modification level estimation, which is open to any read-count-based experimental approach.


2008 ◽  
Vol 100 (2) ◽  
pp. 690-697 ◽  
Author(s):  
Irina V. Sokolova ◽  
Istvan Mody

Silencing-induced homeostatic plasticity is usually expressed as a change in the amplitude or the frequency of miniature postsynaptic currents. Here we report that, prolonged (∼24 h) silencing of mature (20–22 days in vitro) cultured hippocampal neurons using the voltage-gated sodium channel blocker tetrodotoxin (TTX) produced no effects on the amplitude or frequency of the miniature excitatory postsynaptic currents (mEPSCs). However, the silencing changed the intrinsic membrane properties of the neurons, resulting in an increased excitability and rate of action potentials firing upon TTX washout. Allowing neurons to recover in TTX-free recording solution for a short period of time after the silencing resulted in potentiation of mEPSC amplitudes. This form of activity-dependent potentiation is different from classical long-term potentiation, as similar potentiation was not seen in nonsilenced neurons treated with bicuculline to raise their spiking activity to the same level displayed by the silenced neurons during TTX washout. Also, the potentiation of mEPSC amplitudes after the recovery period was not affected by the N-methyl-d-aspartate receptor blocker d-2-amino-5-phosponopentanoic acid or by the calcium/calmodulin-dependent kinase II (CaMKII) inhibitor KN-62 but was abolished by the L-type calcium channel blocker nifedipine. We thus conclude that the potentiation of mEPSC amplitudes following brief recovery of spiking activity in chronically silenced neurons represents a novel form of metaplasticity that differs from the conventional models of homeostatic synaptic plasticity.


1997 ◽  
pp. 905-908 ◽  
Author(s):  
H. Matthies ◽  
S. Staak ◽  
K. H. Smalla ◽  
M. Krug

Sign in / Sign up

Export Citation Format

Share Document