scholarly journals Identification of blood autosomal cis-expression quantitative trait methylation (cis-eQTMs) in children

2020 ◽  
Author(s):  
Carlos Ruiz-Arenas ◽  
Carles Hernandez-Ferrer ◽  
Marta Vives-Usano ◽  
Sergi Marí ◽  
Inés Quintela ◽  
...  

AbstractBackgroundThe identification of expression quantitative trait methylation (eQTMs), defined as correlations between gene expression and DNA methylation levels, might help the biological interpretation of epigenome-wide association studies (EWAS). We aimed to identify autosomal cis-eQTMs in child blood, using data from 832 children of the Human Early Life Exposome (HELIX) project.MethodsBlood DNA methylation and gene expression were measured with the Illumina 450K and the Affymetrix HTA v2 arrays, respectively. The relationship between methylation levels and expression of nearby genes (transcription start site (TSS) within a window of 1 Mb) was assessed by fitting 13.6 M linear regressions adjusting for sex, age, and cohort.ResultsWe identified 63,831 autosomal cis-eQTMs, representing 35,228 unique CpGs and 11,071 unique transcript clusters (TCs, genes). 74.3% of these cis-eQTMs were located at <250 kb, 60.0% showed an inverse relationship and 23.9% had at least one genetic variant associated with the methylation and expression levels. They were enriched for active blood regulatory regions. Adjusting for cellular composition decreased the number of cis-eQTMs to 37.7%, suggesting that some of them were cell type-specific. The overlap of child blood cis-eQTMs with those described in adults was small, and child and adult shared cis-eQTMs tended to be proximal to the TSS, enriched for genetic variants and with lower cell type specificity. Only half of the cis-eQTMs could be captured through annotation to the closest gene.ConclusionsThis catalogue of blood autosomal cis-eQTMs in children can help the biological interpretation of EWAS findings, and is publicly available at https://helixomics.isglobal.org/.

2021 ◽  
Author(s):  
Elior Rahmani ◽  
Brandon Jew ◽  
Regev Schweiger ◽  
Brooke Rhead ◽  
Lindsey A. Criswell ◽  
...  

AbstractWe benchmarked two approaches for the detection of cell-type-specific differential DNA methylation: Tensor Composition Analysis (TCA) and a regression model with interaction terms (CellDMC). Our experiments alongside rigorous mathematical explanations show that TCA is superior over CellDMC, thus resolving recent criticisms suggested by Jing et al. Following misconceptions by Jing and colleagues with modelling cell-type-specificity and the application of TCA, we further discuss best practices for performing association studies at cell-type resolution. The scripts for reproducing all of our results and figures are publicly available at github.com/cozygene/CellTypeSpecificMethylationAnalysis.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sinisa Hrvatin ◽  
Christopher P Tzeng ◽  
M Aurel Nagy ◽  
Hume Stroud ◽  
Charalampia Koutsioumpa ◽  
...  

Enhancers are the primary DNA regulatory elements that confer cell type specificity of gene expression. Recent studies characterizing individual enhancers have revealed their potential to direct heterologous gene expression in a highly cell-type-specific manner. However, it has not yet been possible to systematically identify and test the function of enhancers for each of the many cell types in an organism. We have developed PESCA, a scalable and generalizable method that leverages ATAC- and single-cell RNA-sequencing protocols, to characterize cell-type-specific enhancers that should enable genetic access and perturbation of gene function across mammalian cell types. Focusing on the highly heterogeneous mammalian cerebral cortex, we apply PESCA to find enhancers and generate viral reagents capable of accessing and manipulating a subset of somatostatin-expressing cortical interneurons with high specificity. This study demonstrates the utility of this platform for developing new cell-type-specific viral reagents, with significant implications for both basic and translational research.


2018 ◽  
Author(s):  
Eilis Hannon ◽  
Tyler J Gorrie-Stone ◽  
Melissa C Smart ◽  
Joe Burrage ◽  
Amanda Hughes ◽  
...  

ABSTRACTCharacterizing the complex relationship between genetic, epigenetic and transcriptomic variation has the potential to increase understanding about the mechanisms underpinning health and disease phenotypes. In this study, we describe the most comprehensive analysis of common genetic variation on DNA methylation (DNAm) to date, using the Illumina EPIC array to profile samples from the UK Household Longitudinal study. We identified 12,689,548 significant DNA methylation quantitative trait loci (mQTL) associations (P < 6.52x10-14) occurring between 2,907,234 genetic variants and 93,268 DNAm sites, including a large number not identified using previous DNAm-profiling methods. We demonstrate the utility of these data for interpreting the functional consequences of common genetic variation associated with > 60 human traits, using Summary data–based Mendelian Randomization (SMR) to identify 1,662 pleiotropic associations between 36 complex traits and 1,246 DNAm sites. We also use SMR to characterize the relationship between DNAm and gene expression, identifying 6,798 pleiotropic associations between 5,420 DNAm sites and the transcription of 1,702 genes. Our mQTL database and SMR results are available via a searchable online database (http://www.epigenomicslab.com/online-data-resources/) as a resource to the research community.


2020 ◽  
Author(s):  
Devanshi Patel ◽  
Xiaoling Zhang ◽  
John J. Farrell ◽  
Jaeyoon Chung ◽  
Thor D. Stein ◽  
...  

ABSTRACTBecause regulation of gene expression is heritable and context-dependent, we investigated AD-related gene expression patterns in cell-types in blood and brain. Cis-expression quantitative trait locus (eQTL) mapping was performed genome-wide in blood from 5,257 Framingham Heart Study (FHS) participants and in brain donated by 475 Religious Orders Study/Memory & Aging Project (ROSMAP) participants. The association of gene expression with genotypes for all cis SNPs within 1Mb of genes was evaluated using linear regression models for unrelated subjects and linear mixed models for related subjects. Cell type-specific eQTL (ct-eQTL) models included an interaction term for expression of “proxy” genes that discriminate particular cell type. Ct-eQTL analysis identified 11,649 and 2,533 additional significant gene-SNP eQTL pairs in brain and blood, respectively, that were not detected in generic eQTL analysis. Of note, 386 unique target eGenes of significant eQTLs shared between blood and brain were enriched in apoptosis and Wnt signaling pathways. Five of these shared genes are established AD loci. The potential importance and relevance to AD of significant results in myeloid cell-types is supported by the observation that a large portion of GWS ct-eQTLs map within 1Mb of established AD loci and 58% (23/40) of the most significant eGenes in these eQTLs have previously been implicated in AD. This study identified cell-type specific expression patterns for established and potentially novel AD genes, found additional evidence for the role of myeloid cells in AD risk, and discovered potential novel blood and brain AD biomarkers that highlight the importance of cell-type specific analysis.


Development ◽  
1984 ◽  
Vol 83 (Supplement) ◽  
pp. 31-40
Author(s):  
Adrian P. Bird

Vertebrate DNA is methylated at a high proportion of cytosine residues in the sequence CpG, and it has been suggested that the distribution of methylated and non-methylated CpGs in a given cell type influences the pattern of gene expression in those cells. Since a DNA methylation pattern is normally transmitted faithfully to daughter cells via cell division, this idea suggests an origin for stable, clonally inherited patterns of gene expression. This article discusses some of the current evidence for a relationship between DNA methylation and gene expression. Although the evidence is incomplete, it appears already that the relationship is variable: transcription of some genes is repressed by the presence of 5-methylcytosine at certain CpGs, and may be controlled by methylation, while transcription of other genes is indifferent to methylation. In attempting to explain this variability it is helpful to adopt an evolutionary perspective.


2021 ◽  
Author(s):  
Anthony Mark Raus ◽  
Tyson D Fuller ◽  
Nellie E Nelson ◽  
David A Valientes ◽  
Anita Bayat ◽  
...  

Aerobic exercise promotes physiological and molecular adaptations in neurons to influence brain function and behavior. The most well studied neurobiological consequences of exercise are those which underlie exercise-induced improvements in hippocampal memory, including the expression and regulation of the neurotrophic factor Bdnf. Whether aerobic exercise taking place during early-life periods of postnatal brain maturation has similar impacts on gene expression and its regulation remains to be investigated. Using unbiased next-generation sequencing we characterize gene expression programs and their regulation by specific, memory-associated histone modifications during juvenile-adolescent voluntary exercise (ELE). Traditional transcriptomic and epigenomic sequencing approaches have either used heterogeneous cell populations from whole tissue homogenates or flow cytometry for single cell isolation to distinguish cell types / subtypes. These methods fall short in providing cell-type specificity without compromising sequencing depth or procedure-induced changes to cellular phenotype. In this study, we use simultaneous isolation of translating mRNA and nuclear chromatin from a neuron-enriched cell population to more accurately pair ELE-induced changes in gene expression with epigenetic modifications. We employ a line of transgenic mice expressing the NuTRAP (Nuclear Tagging and Translating Ribosome Affinity Purification) cassette under the Emx1 promoter allowing for brain cell-type specificity. We then developed a technique that combines nuclear isolation using Isolation of Nuclei TAgged in Specific Cell Types (INTACT) with Translating Ribosomal Affinity Purification (TRAP) methods to determine cell type-specific epigenetic modifications influencing gene expression programs from a population of Emx1 expressing hippocampal neurons. Data from RNA-seq and CUT&RUN-seq were coupled to evaluate histone modifications influencing the expression of translating mRNA in neurons after early-life exercise (ELE). We also performed separate INTACT and TRAP isolations for validation of our protocol and demonstrate similar molecular functions and biological processes implicated by gene ontology (GO) analysis. Finally, as prior studies use tissue from opposite brain hemispheres to pair transcriptomic and epigenomic data from the same rodent, we take a bioinformatics approach to compare hemispheric differences in gene expression programs and histone modifications altered by by ELE. Our data reveal transcriptional and epigenetic signatures of ELE exposure and identify novel candidate gene-histone modification interactions for further investigation. Importantly, our novel approach of combined INTACT/TRAP methods from the same cell suspension allows for simultaneous transcriptomic and epigenomic sequencing in a cell-type specific manner.


2021 ◽  
Author(s):  
Michael Scherer ◽  
Gilles Gasparoni ◽  
Souad Rahmouni ◽  
Tatiana Shashkova ◽  
Marion Arnoux ◽  
...  

Background: Understanding the influence of genetic variants on DNA methylation is fundamental for the interpretation of epigenomic data in the context of disease. There is a need for systematic approaches not only for determining methylation quantitative trait loci (methQTL) but also for discriminating general from cell-type-specific effects. Results: Here, we present a two-step computational framework MAGAR, which fully supports identification of methQTLs from matched genotyping and DNA methylation data, and additionally the identification of quantitative cell-type-specific methQTL effects. In a pilot analysis, we apply MAGAR on data in four tissues (ileum, rectum, T-cells, B-cells) from healthy individuals and demonstrate the discrimination of common from cell-type-specific methQTLs. We experimentally validate both types of methQTLs in an independent dataset comprising additional cell types and tissues. Finally, we validate selected methQTLs (PON1, ZNF155, NRG2) by ultra-deep local sequencing. In line with previous reports, we find cell-type-specific methQTLs to be preferentially located in enhancer elements. Conclusions: Our analysis demonstrates that a systematic analysis of methQTLs provides important new insights on the influences of genetic variants to cell-type-specific epigenomic variation.


2020 ◽  
Author(s):  
Fumihiko Takeuchi ◽  
Norihiro Kato

Abstract Background: Epigenome-wide association studies (EWAS) and differential gene expression analyses are generally performed on tissue samples, which consist of multiple cell types. Cell-type-specific effects of a trait, such as disease, on the omics expression are of interest but difficult or costly to measure experimentally. By measuring omics data for the bulk tissue, cell type composition of a sample can be inferred statistically. Subsequently, cell-type-specific effects are estimated by linear regression that includes terms representing the interaction between the cell type proportions and the trait. This approach involves two issues, scaling and multicollinearity.Results: First, although cell composition is analyzed in linear scale, differential methylation/expression is analyzed suitably in the logit/log scale. To simultaneously analyze two scales, we developed nonlinear regression. Second, we show that the interaction terms are highly collinear, which is obstructive to ordinary regression. To cope with the multicollinearity, we applied ridge regularization. In simulated and real data, the improvement was modest by nonlinear regression and substantial by ridge regularization. Conclusion: Nonlinear ridge regression performed cell-type-specific association test on bulk omics data more robustly than previous methods. The omicwas package for R implements nonlinear ridge regression for cell-type-specific EWAS, differential gene expression and QTL analyses. The software is freely available from https://github.com/fumi-github/omicwas


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Michael Scherer ◽  
Gilles Gasparoni ◽  
Souad Rahmouni ◽  
Tatiana Shashkova ◽  
Marion Arnoux ◽  
...  

Abstract Background Understanding the influence of genetic variants on DNA methylation is fundamental for the interpretation of epigenomic data in the context of disease. There is a need for systematic approaches not only for determining methylation quantitative trait loci (methQTL), but also for discriminating general from cell type-specific effects. Results Here, we present a two-step computational framework MAGAR (https://bioconductor.org/packages/MAGAR), which fully supports the identification of methQTLs from matched genotyping and DNA methylation data, and additionally allows for illuminating cell type-specific methQTL effects. In a pilot analysis, we apply MAGAR on data in four tissues (ileum, rectum, T cells, B cells) from healthy individuals and demonstrate the discrimination of common from cell type-specific methQTLs. We experimentally validate both types of methQTLs in an independent data set comprising additional cell types and tissues. Finally, we validate selected methQTLs located in the PON1, ZNF155, and NRG2 genes by ultra-deep local sequencing. In line with previous reports, we find cell type-specific methQTLs to be preferentially located in enhancer elements. Conclusions Our analysis demonstrates that a systematic analysis of methQTLs provides important new insights on the influences of genetic variants to cell type-specific epigenomic variation.


Sign in / Sign up

Export Citation Format

Share Document