scholarly journals Predatory selection of mucoid, antibiotic resistant Pseudomonas putida phenotype by myxobacterium Cystobacter ferrugineus

2020 ◽  
Author(s):  
Shukria Akbar ◽  
D. Cole Stevens

AbstractPredation contributes to the structure and diversity of microbial communities. Predatory myxobacteria are ubiquitous to a variety of microbial habitats and capably consume a broad diversity of microbial prey. Predator-prey experiments utilizing myxobacteria have provided details into predatory mechanisms and features that facilitate consumption of prey. However, prey resistance to myxobacterial predation remains underexplored, and prey resistances have been observed exclusively from predator-prey experiments that included the model myxobacterium Myxococcus xanthus. Utilizing a predator-prey pairing that instead included the myxobacterium, Cystobacter ferrugineus, with Pseudomonas putida as prey, we infrequently observed surviving phenotypes capable of eluding predation. Comparative transcriptomics between P. putida unexposed to C. ferrugineus and the survivor phenotype suggested that increased expression of efflux pumps, genes associated with mucoid conversion, and various membrane features contribute to predator avoidance. The P. putida survivor phenotype was confirmed to be resistant to the antibiotics kanamycin, gentamicin, and tetracycline and to produce more alginate than predator-unexposed P. putida. Unique features observed from the survivor phenotype including small colony variation, efflux-mediated antibiotic resistance, and increased mucoid conversion overlap with traits associated with Pseudomonas aeruginosa predator avoidance and pathogenicity. The survivor phenotype also benefited from increased predator resistance during subsequent predation assays. These results demonstrate the utility of myxobacterial predator-prey models and provide insight into prey resistances in response to predatory stress might contribute to the phenotypic diversity and structure of bacterial communities.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shukria Akbar ◽  
D. Cole Stevens

AbstractPredation contributes to the structure and diversity of microbial communities. Predatory myxobacteria are ubiquitous to a variety of microbial habitats and capably consume a broad diversity of microbial prey. Predator–prey experiments utilizing myxobacteria have provided details into predatory mechanisms and features that facilitate consumption of prey. However, prey resistance to myxobacterial predation remains underexplored, and prey resistances have been observed exclusively from predator–prey experiments that included the model myxobacterium Myxococcus xanthus. Utilizing a predator–prey pairing that instead included the myxobacterium, Cystobacter ferrugineus, with Pseudomonas putida as prey, we observed surviving phenotypes capable of eluding predation. Comparative transcriptomics between P. putida unexposed to C. ferrugineus and the survivor phenotype suggested that increased expression of efflux pumps, genes associated with mucoid conversion, and various membrane features contribute to predator avoidance. Unique features observed from the survivor phenotype when compared to the parent P. putida include small colony variation, efflux-mediated antibiotic resistance, phenazine-1-carboxylic acid production, and increased mucoid conversion. These results demonstrate the utility of myxobacterial predator–prey models and provide insight into prey resistances in response to predatory stress that might contribute to the phenotypic diversity and structure of bacterial communities.


2020 ◽  
Vol 27 ◽  
Author(s):  
Fırat Kurt

: Oligopeptide transporter 3 (OPT3) proteins are one of the subsets of OPT clade, yet little is known about these transporters. Therefore, homolog OPT3 proteins in several plant species were investigated and characterized using bioinformatical tools. Motif and co-expression analyses showed that OPT3 proteins may be involved in both biotic and abiotic stress responses as well as growth and developmental processes. AtOPT3 usually seemed to take part in Fe homeostasis whereas ZmOPT3 putatively interacted with proteins involved in various biological processes from plant defense system to stress responses. Glutathione (GSH), as a putative alternative chelating agent, was used in the AtOPT3 and ZmOPT3 docking analyses to identify their putative binding residues. The information given in this study will contribute to the understanding of OPT3 proteins’ interactions in various pathways and to the selection of potential ligands for OPT3s.


Filomat ◽  
2017 ◽  
Vol 31 (18) ◽  
pp. 5811-5825
Author(s):  
Xinhong Zhang

In this paper we study the global dynamics of stochastic predator-prey models with non constant mortality rate and Holling type II response. Concretely, we establish sufficient conditions for the extinction and persistence in the mean of autonomous stochastic model and obtain a critical value between them. Then by constructing appropriate Lyapunov functions, we prove that there is a nontrivial positive periodic solution to the non-autonomous stochastic model. Finally, numerical examples are introduced to illustrate the results developed.


2006 ◽  
Vol 167 (2) ◽  
pp. 246
Author(s):  
Bergström ◽  
Englund ◽  
Leonardsson

Author(s):  
Ana Rita Almeida ◽  
Marta Tacão ◽  
Joana Soares ◽  
Inês Domingues ◽  
Isabel Henriques

The emergence of antibiotic-resistant pathogens due to worldwide antibiotic use is raising concern in several settings, including aquaculture. In this work, the selection of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) was evaluated after exposure of zebrafish to oxytetracycline (OTC) for two months, followed by a recovery period. The selection of ARB in water and fish was determined using selective media. The abundance of tetA genes was estimated through qPCR. Higher prevalence of ARB was measured in all samples exposed to the antibiotic when compared to control samples, although statistical significance was only achieved five days after exposure. Isolates recovered from samples exposed to the antibiotic were affiliated with Pseudomonas and Stenotrophomonas. Various antibiotic susceptibility profiles were detected and 37% of the isolates displayed multidrug resistance (MDR). The selection of the tetA gene was confirmed by qPCR at the highest OTC concentration tested. Two MDR isolates, tested using zebrafish embryos, caused significant mortality, indicating a potential impact on fish health and survival. Overall, our work highlights the potential impact of antibiotic contamination in the selection of potential pathogenic ARB and ARGS.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 654
Author(s):  
Adriana Trotta ◽  
Laura Del Sambro ◽  
Michela Galgano ◽  
Stefano Ciccarelli ◽  
Erika Ottone ◽  
...  

Background: S. enterica subsp. houtenae has been rarely documented, and very limited genomic information is available. This report describes a rare case of primary extraintestinal salmonellosis in a young roe deer, associated with Salmonella enterica subsp. houtenae. Methods: A traditional cultural-based analysis was carried out from the contents of a neck abscess; biochemical identification and PCR assay were performed to isolate and identify the pathogen. Through whole-genome sequencing (WGS), multilocus sequence typing (MLST), core genome MLST (cgMLST), and the Salmonella pathogenicity islands (SPIs) survey, resistome and virulome genes were investigated to gain insight into the virulence and antimicrobial resistance of S. houtenae. Results: Biochemical identification and PCR confirmed the presence of Salmonella spp. in the swelling. The WGS analysis identified Salmonella enterica subspecies houtenae serovar 43:z4,z23:- and ST 958. The virulence study predicted a multidrug resistance pattern with resistance shown against aminoglycosides, tetracycline, beta-lactamase, fluoroquinolones, fosfomycin, nitroimidazole, aminocoumarin, and peptide. Fifty-three antibiotic-resistant genes were identified. No plasmids were detected. Conclusion: This study demonstrates the importance of continuous surveillance of pathogenic salmonellae. Biomolecular analyses combined with epidemiological data can provide important information about poorly described Salmonella strains and can help to improve animal welfare.


Parasitology ◽  
2010 ◽  
Vol 137 (6) ◽  
pp. 1027-1038 ◽  
Author(s):  
ANDY FENTON ◽  
SARAH E. PERKINS

SUMMARYPredator-prey models are often applied to the interactions between host immunity and parasite growth. A key component of these models is the immune system's functional response, the relationship between immune activity and parasite load. Typically, models assume a simple, linear functional response. However, based on the mechanistic interactions between parasites and immunity we argue that alternative forms are more likely, resulting in very different predictions, ranging from parasite exclusion to chronic infection. By extending this framework to consider multiple infections we show that combinations of parasites eliciting different functional responses greatly affect community stability. Indeed, some parasites may stabilize other species that would be unstable if infecting alone. Therefore hosts' immune systems may have adapted to tolerate certain parasites, rather than clear them and risk erratic parasite dynamics. We urge for more detailed empirical information relating immune activity to parasite load to enable better predictions of the dynamic consequences of immune-mediated interspecific interactions within parasite communities.


2002 ◽  
Vol 35 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Magno E.M. Meza ◽  
Michel I.S. Costa ◽  
Amit Bhaya ◽  
Eugenius Kaszkurewicz

2011 ◽  
Vol 373 (2) ◽  
pp. 512-520 ◽  
Author(s):  
José Luis Bravo ◽  
Manuel Fernández ◽  
Manuel Gámez ◽  
Bertha Granados ◽  
Antonio Tineo

Sign in / Sign up

Export Citation Format

Share Document