scholarly journals COVID-19 detection on IBM quantum computer with classical-quantum transfer learning

Author(s):  
Erdi Acar ◽  
İhsan Yilmaz

AbstractDiagnose the infected patient as soon as possible in the coronavirus 2019 (COVID-19) outbreak which is declared as a pandemic by the world health organization (WHO) is extremely important. Experts recommend CT imaging as a diagnostic tool because of the weak points of the nucleic acid amplification test (NAAT). In this study, the detection of COVID-19 from CT images, which give the most accurate response in a short time, was investigated in the classical computer and firstly in quantum computers. Using the quantum transfer learning method, we experimentally perform COVID-19 detection in different quantum real processors (IBMQx2, IBMQ-London and IBMQ-Rome) of IBM, as well as in different simulators (Pennylane, Qiskit-Aer and Cirq). By using a small number of data sets such as 126 COVID-19 and 100 Normal CT images, we obtained a positive or negative classification of COVID-19 with 90% success in classical computers, while we achieved a high success rate of 94-100% in quantum computers. Also, according to the results obtained, machine learning process in classical computers requiring more processors and time than quantum computers can be realized in a very short time with a very small quantum processor such as 4 qubits in quantum computers. If the size of the data set is small; Due to the superior properties of quantum, it is seen that according to the classification of COVID-19 and Normal, in terms of machine learning, quantum computers seem to outperform traditional computers.

Author(s):  
Jianping Ju ◽  
Hong Zheng ◽  
Xiaohang Xu ◽  
Zhongyuan Guo ◽  
Zhaohui Zheng ◽  
...  

AbstractAlthough convolutional neural networks have achieved success in the field of image classification, there are still challenges in the field of agricultural product quality sorting such as machine vision-based jujube defects detection. The performance of jujube defect detection mainly depends on the feature extraction and the classifier used. Due to the diversity of the jujube materials and the variability of the testing environment, the traditional method of manually extracting the features often fails to meet the requirements of practical application. In this paper, a jujube sorting model in small data sets based on convolutional neural network and transfer learning is proposed to meet the actual demand of jujube defects detection. Firstly, the original images collected from the actual jujube sorting production line were pre-processed, and the data were augmented to establish a data set of five categories of jujube defects. The original CNN model is then improved by embedding the SE module and using the triplet loss function and the center loss function to replace the softmax loss function. Finally, the depth pre-training model on the ImageNet image data set was used to conduct training on the jujube defects data set, so that the parameters of the pre-training model could fit the parameter distribution of the jujube defects image, and the parameter distribution was transferred to the jujube defects data set to complete the transfer of the model and realize the detection and classification of the jujube defects. The classification results are visualized by heatmap through the analysis of classification accuracy and confusion matrix compared with the comparison models. The experimental results show that the SE-ResNet50-CL model optimizes the fine-grained classification problem of jujube defect recognition, and the test accuracy reaches 94.15%. The model has good stability and high recognition accuracy in complex environments.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1690
Author(s):  
Teague Tomesh ◽  
Pranav Gokhale ◽  
Eric R. Anschuetz ◽  
Frederic T. Chong

Many quantum algorithms for machine learning require access to classical data in superposition. However, for many natural data sets and algorithms, the overhead required to load the data set in superposition can erase any potential quantum speedup over classical algorithms. Recent work by Harrow introduces a new paradigm in hybrid quantum-classical computing to address this issue, relying on coresets to minimize the data loading overhead of quantum algorithms. We investigated using this paradigm to perform k-means clustering on near-term quantum computers, by casting it as a QAOA optimization instance over a small coreset. We used numerical simulations to compare the performance of this approach to classical k-means clustering. We were able to find data sets with which coresets work well relative to random sampling and where QAOA could potentially outperform standard k-means on a coreset. However, finding data sets where both coresets and QAOA work well—which is necessary for a quantum advantage over k-means on the entire data set—appears to be challenging.


Author(s):  
A. Hanel ◽  
H. Klöden ◽  
L. Hoegner ◽  
U. Stilla

Today, cameras mounted in vehicles are used to observe the driver as well as the objects around a vehicle. In this article, an outline of a concept for image based recognition of dynamic traffic situations is shown. A dynamic traffic situation will be described by road users and their intentions. Images will be taken by a vehicle fleet and aggregated on a server. On these images, new strategies for machine learning will be applied iteratively when new data has arrived on the server. The results of the learning process will be models describing the traffic situation and will be transmitted back to the recording vehicles. The recognition will be performed as a standalone function in the vehicles and will use the received models. It can be expected, that this method can make the detection and classification of objects around the vehicles more reliable. In addition, the prediction of their actions for the next seconds should be possible. As one example how this concept is used, a method to recognize the illumination situation of a traffic scene is described. This allows to handle different appearances of objects depending on the illumination of the scene. Different illumination classes will be defined to distinguish different illumination situations. Intensity based features are extracted from the images and used by a classifier to assign an image to an illumination class. This method is being tested for a real data set of daytime and nighttime images. It can be shown, that the illumination class can be classified correctly for more than 80% of the images.


Author(s):  
Muhammad Nur Aiman Shapiee ◽  
Muhammad Ar Rahim Ibrahim ◽  
Mohd Azraai Mohd Razman ◽  
Muhammad Amirul Abdullah ◽  
Rabiu Muazu Musa ◽  
...  

Author(s):  
Zeynel Abidin Çil ◽  
Abdullah Caliskan

Emergency departments of hospitals are busy. In recent years, patient arrivals have significantly risen at emergency departments in Turkey like other countries in the world. The main important features of emergency services are uninterrupted service, providing services in a short time, and priority to emergency patients. However, patients who do not need immediate treatment can sometimes apply to this department due to several reasons like working time and short waiting time. This situation can reduce efficiency and effectiveness at emergency departments. On the other hand, computers solve complex classification problems by using machine learning methods. The methods have a wide range of applications, such as computational biology and computer vision. Therefore, classification of emergency and non-emergency patients is vital to increase productivity of the department. This chapter tries to find the best classifier for detection of emergency patients by utilizing a data set.


Author(s):  
Alexander M. Zolotarev ◽  
Brian J. Hansen ◽  
Ekaterina A. Ivanova ◽  
Katelynn M. Helfrich ◽  
Ning Li ◽  
...  

Background: Atrial fibrillation (AF) can be maintained by localized intramural reentrant drivers. However, AF driver detection by clinical surface-only multielectrode mapping (MEM) has relied on subjective interpretation of activation maps. We hypothesized that application of machine learning to electrogram frequency spectra may accurately automate driver detection by MEM and add some objectivity to the interpretation of MEM findings. Methods: Temporally and spatially stable single AF drivers were mapped simultaneously in explanted human atria (n=11) by subsurface near-infrared optical mapping (NIOM; 0.3 mm 2 resolution) and 64-electrode MEM (higher density or lower density with 3 and 9 mm 2 resolution, respectively). Unipolar MEM and NIOM recordings were processed by Fourier transform analysis into 28 407 total Fourier spectra. Thirty-five features for machine learning were extracted from each Fourier spectrum. Results: Targeted driver ablation and NIOM activation maps efficiently defined the center and periphery of AF driver preferential tracks and provided validated annotations for driver versus nondriver electrodes in MEM arrays. Compared with analysis of single electrogram frequency features, averaging the features from each of the 8 neighboring electrodes, significantly improved classification of AF driver electrograms. The classification metrics increased when less strict annotation, including driver periphery electrodes, were added to driver center annotation. Notably, f1-score for the binary classification of higher-density catheter data set was significantly higher than that of lower-density catheter (0.81±0.02 versus 0.66±0.04, P <0.05). The trained algorithm correctly highlighted 86% of driver regions with higher density but only 80% with lower-density MEM arrays (81% for lower-density+higher-density arrays together). Conclusions: The machine learning model pretrained on Fourier spectrum features allows efficient classification of electrograms recordings as AF driver or nondriver compared with the NIOM gold-standard. Future application of NIOM-validated machine learning approach may improve the accuracy of AF driver detection for targeted ablation treatment in patients.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 581
Author(s):  
Guadalupe Obdulia Gutiérrez-Esparza ◽  
Oscar Infante Vázquez ◽  
Maite Vallejo ◽  
José Hernández-Torruco

Metabolic syndrome is a health condition that increases the risk of heart diseases, diabetes, and stroke. The prognostic variables that identify this syndrome have already been defined by the World Health Organization (WHO), the National Cholesterol Education Program Third Adult Treatment Panel (ATP III) as well as by the International Diabetes Federation. According to these guides, there is some symmetry among anthropometric prognostic variables to classify abdominal obesity in people with metabolic syndrome. However, some appear to be more sensitive than others, nevertheless, these proposed definitions have failed to appropriately classify a specific population or ethnic group. In this work, we used the ATP III criteria as the framework with the purpose to rank the health parameters (clinical and anthropometric measurements, lifestyle data, and blood tests) from a data set of 2942 participants of Mexico City Tlalpan 2020 cohort, applying machine learning algorithms. We aimed to find the most appropriate prognostic variables to classify Mexicans with metabolic syndrome. The criteria of sensitivity, specificity, and balanced accuracy were used for validation. The ATP III using Waist-to-Height-Ratio (WHtR) as an anthropometric index for the diagnosis of abdominal obesity achieved better performance in classification than waist or body mass index. Further work is needed to assess its precision as a classification tool for Metabolic Syndrome in a Mexican population.


2020 ◽  
Vol 10 (6) ◽  
pp. 1999 ◽  
Author(s):  
Milica M. Badža ◽  
Marko Č. Barjaktarović

The classification of brain tumors is performed by biopsy, which is not usually conducted before definitive brain surgery. The improvement of technology and machine learning can help radiologists in tumor diagnostics without invasive measures. A machine-learning algorithm that has achieved substantial results in image segmentation and classification is the convolutional neural network (CNN). We present a new CNN architecture for brain tumor classification of three tumor types. The developed network is simpler than already-existing pre-trained networks, and it was tested on T1-weighted contrast-enhanced magnetic resonance images. The performance of the network was evaluated using four approaches: combinations of two 10-fold cross-validation methods and two databases. The generalization capability of the network was tested with one of the 10-fold methods, subject-wise cross-validation, and the improvement was tested by using an augmented image database. The best result for the 10-fold cross-validation method was obtained for the record-wise cross-validation for the augmented data set, and, in that case, the accuracy was 96.56%. With good generalization capability and good execution speed, the new developed CNN architecture could be used as an effective decision-support tool for radiologists in medical diagnostics.


2017 ◽  
Vol 11 ◽  
pp. 117955651771503 ◽  
Author(s):  
Niels Ove Illum ◽  
Kim Oren Gradel

Aim: To help parents assess disability in their own children using World Health Organization (WHO) International Classification of Functioning, Disability and Health, Child and Youth Version (ICF-CY) code qualifier scoring and to assess the validity and reliability of the data sets obtained. Method: Parents of 162 children with spina bifida, spinal muscular atrophy, muscular disorders, cerebral palsy, visual impairment, hearing impairment, mental disability, or disability following brain tumours performed scoring for 26 body functions qualifiers (b codes) and activities and participation qualifiers (d codes). Scoring was repeated after 6 months. Psychometric and Rasch data analysis was undertaken. Results: The initial and repeated data had Cronbach α of 0.96 and 0.97, respectively. Inter-code correlation was 0.54 (range: 0.23-0.91) and 0.76 (range: 0.20-0.92). The corrected code-total correlations were 0.72 (range: 0.49-0.83) and 0.75 (range: 0.50-0.87). When repeated, the ICF-CY code qualifier scoring showed a correlation R of 0.90. Rasch analysis of the selected ICF-CY code data demonstrated a mean measure of 0.00 and 0.00, respectively. Code qualifier infit mean square (MNSQ) had a mean of 1.01 and 1.00. The mean corresponding outfit MNSQ was 1.05 and 1.01. The ICF-CY code τ thresholds and category measures were continuous when assessed and reassessed by parents. Participating children had a mean of 56 codes scores (range: 26-130) before and a mean of 55.9 scores (range: 25-125) after repeat. Corresponding measures were −1.10 (range: −5.31 to 5.25) and −1.11 (range: −5.42 to 5.36), respectively. Based on measures obtained at the 2 occasions, the correlation coefficient R was 0.84. The child code map showed coherence of ICF-CY codes at each level. There was continuity in covering the range across disabilities. And, first and foremost, the distribution of codes reflexed a true continuity in disability with codes for motor functions activated first, then codes for cognitive functions, and, finally, codes for more complex functions. Conclusions: Parents can assess their own children in a valid and reliable way, and if the WHO ICF-CY second-level code data set is functioning in a clinically sound way, it can be employed as a tool for identifying the severity of disabilities and for monitoring changes in those disabilities over time. The ICF-CY codes selected in this study might be one cornerstone in forming a national or even international generic set of ICF-CY codes for the benefit of children with disabilities, their parents, and caregivers and for the whole community supporting with children with disabilities on a daily and perpetual basis.


Sign in / Sign up

Export Citation Format

Share Document