scholarly journals Immunological memory to SARS-CoV-2 assessed for up to eight months after infection

Author(s):  
Jennifer M. Dan ◽  
Jose Mateus ◽  
Yu Kato ◽  
Kathryn M. Hastie ◽  
Esther Dawen Yu ◽  
...  

ABSTRACTUnderstanding immune memory to SARS-CoV-2 is critical for improving diagnostics and vaccines, and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥ 6 months post-infection. IgG to the Spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month post symptom onset. SARS-CoV-2-specific CD4+ T cells and CD8+ T cells declined with a half-life of 3-5 months. By studying antibody, memory B cell, CD4+ T cell, and CD8+ T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.

Science ◽  
2021 ◽  
pp. eabf4063
Author(s):  
Jennifer M. Dan ◽  
Jose Mateus ◽  
Yu Kato ◽  
Kathryn M. Hastie ◽  
Esther Dawen Yu ◽  
...  

Understanding immune memory to SARS-CoV-2 is critical for improving diagnostics and vaccines, and for assessing the likely future course of the COVID-19 pandemic. We analyzed multiple compartments of circulating immune memory to SARS-CoV-2 in 254 samples from 188 COVID-19 cases, including 43 samples at ≥ 6 months post-infection. IgG to the Spike protein was relatively stable over 6+ months. Spike-specific memory B cells were more abundant at 6 months than at 1 month post symptom onset. SARS-CoV-2-specific CD4+ T cells and CD8+ T cells declined with a half-life of 3-5 months. By studying antibody, memory B cell, CD4+ T cell, and CD8+ T cell memory to SARS-CoV-2 in an integrated manner, we observed that each component of SARS-CoV-2 immune memory exhibited distinct kinetics.


2021 ◽  
Author(s):  
Pablo Garcia-Valtanen ◽  
Christopher Martin Hope ◽  
Makutiro Ghislain Masavuli ◽  
Arthur Eng Lip Yeow ◽  
Harikrishnan Balachandran ◽  
...  

Background The duration and magnitude of SARS-CoV-2 immunity after infection, especially with regard to the emergence of new variants of concern (VoC), remains unclear. Here, immune memory to primary infection and immunity to VoC was assessed in mild-COVID-19 convalescents one year after infection and in the absence of viral re-exposure or COVID-19 vaccination. Methods Serum and PBMC were collected from mild-COVID-19 convalescents at ~6 and 12 months after a COVID-19 positive PCR (n=43) and from healthy SARS-CoV-2-seronegative controls (n=15-40). Serum titers of RBD and Spike-specific Ig were quantified by ELISA. Virus neutralisation was assessed against homologous, pseudotyped virus and homologous and VoC live viruses. Frequencies of Spike and RBD-specific memory B cells were quantified by flow cytometry. Magnitude of memory T cell responses was quantified and phenotyped by activation-induced marker assay, while T cell functionality was assessed by intracellular cytokine staining using peptides specific to homologous Spike virus antigen and four VoC Spike antigens. Findings At 12 months after mild-COVID-19, >90% of convalescents remained seropositive for RBD-IgG and 88.9% had circulating RBD-specific memory B cells. Despite this, only 51.2% convalescents had serum neutralising activity against homologous live-SARS-CoV-2 virus, which decreased to 44.2% when tested against live B.1.1.7, 4.6% against B.1.351, 11.6% against P.1 and 16.2%, against B.1.617.2 VoC. Spike and non-Spike-specific T cells were detected in >50% of convalescents with frequency values higher for Spike antigen (95% CI, 0.29-0.68% in CD4+ and 0.11-0.35% in CD8+ T cells), compared to non-Spike antigens. Despite the high prevalence and maintenance of Spike-specific T cells in Spike 'high-responder' convalescents at 12 months, T cell functionality, measured by cytokine expression after stimulation with Spike epitopes corresponding to VoC was severely affected. Interpretations SARS-CoV-2 immunity is retained in a significant proportion of mild COVID-19 convalescents 12 months post-infection in the absence of re-exposure to the virus. Despite this, changes in the amino acid sequence of the Spike antigen that are present in current VoC result in virus evasion of neutralising antibodies, as well as evasion of functional T cell responses.


2004 ◽  
Vol 199 (4) ◽  
pp. 593-602 ◽  
Author(s):  
Barbara J. Hebeis ◽  
Karin Klenovsek ◽  
Peter Rohwer ◽  
Uwe Ritter ◽  
Andrea Schneider ◽  
...  

Humoral immunity is maintained by long-lived plasma cells, constitutively secreting antibodies, and nonsecreting resting memory B cells that are rapidly reactivated upon antigen encounter. The activation requirements for resting memory B cells, particularly the role of T helper cells, are unclear. To analyze the activation of memory B cells, mice were immunized with human cytomegalovirus, a complex human herpesvirus, and tick-born encephalitis virus, and a simple flavivirus. B cell populations devoid of Ig-secreting plasma cells were adoptively transferred into T and B cell–deficient RAG-1−/− mice. Antigenic stimulation 4–6 d after transfer of B cells resulted in rapid IgG production. The response was long lasting and strictly antigen specific, excluding polyclonal B cell activation. CD4+ T cells were not involved since (a) further depletion of CD4+ T cells in the recipient mice did not alter the antibody response and (b) recipient mice contained no detectable CD4+ T cells 90 d posttransfer. Memory B cells could not be activated by a soluble viral protein without T cell help. Transfer of memory B cells into immunocompetent animals indicated that presence of helper T cells did not enhance the memory B cell response. Therefore, our results indicate that activation of virus-specific memory B cells to secrete IgG is independent of cognate or bystander T cell help.


2021 ◽  
Author(s):  
Rishi R Goel ◽  
Mark M Painter ◽  
Sokratis A Apostolidis ◽  
Divij Mathew ◽  
Wenzhao Meng ◽  
...  

SARS-CoV-2 mRNA vaccines have shown remarkable efficacy, especially in preventing severe illness and hospitalization. However, the emergence of several variants of concern and reports of declining antibody levels have raised uncertainty about the durability of immune memory following vaccination. In this study, we longitudinally profiled both antibody and cellular immune responses in SARS-CoV-2 naive and recovered individuals from pre-vaccine baseline to 6 months post-mRNA vaccination. Antibody and neutralizing titers decayed from peak levels but remained detectable in all subjects at 6 months post-vaccination. Functional memory B cell responses, including those specific for the receptor binding domain (RBD) of the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants, were also efficiently generated by mRNA vaccination and continued to increase in frequency between 3 and 6 months post-vaccination. Notably, most memory B cells induced by mRNA vaccines were capable of cross-binding variants of concern, and B cell receptor sequencing revealed significantly more hypermutation in these RBD variant-binding clones compared to clones that exclusively bound wild-type RBD. Moreover, the percent of variant cross-binding memory B cells was higher in vaccinees than individuals who recovered from mild COVID-19. mRNA vaccination also generated antigen-specific CD8+ T cells and durable memory CD4+ T cells in most individuals, with early CD4+ T cell responses correlating with humoral immunity at later timepoints. These findings demonstrate robust, multi-component humoral and cellular immune memory to SARS-CoV-2 and current variants of concern for at least 6 months after mRNA vaccination. Finally, we observed that boosting of pre-existing immunity with mRNA vaccination in SARS-CoV-2 recovered individuals primarily increased antibody responses in the short-term without significantly altering antibody decay rates or long-term B and T cell memory. Together, this study provides insights into the generation and evolution of vaccine-induced immunity to SARS-CoV-2, including variants of concern, and has implications for future booster strategies.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 238-238 ◽  
Author(s):  
Aniko Ginta Pordes ◽  
Christina Hausl ◽  
Peter Allacher ◽  
Rafi Uddin Ahmad ◽  
Eva M Muchitsch ◽  
...  

Abstract Memory B cells specific for factor VIII (FVIII) are critical for maintaining FVIII inhibitors in patients with hemophilia A. They are precursors of anti-FVIII antibody-producing plasma cells and are highly efficient antigen-presenting cells for the activation of T cells. The eradication of FVIII-specific memory B cells will be a prerequisite for any successful new approach to induce immune tolerance in patients with FVIII inhibitors. Little is known about the regulation of these cells. Previously we showed that ligands for toll-like receptors (TLR) 7 and 9 are able to re-stimulate FVIII-specific memory B cells in the absence of T-cell help. However, alternative “helper cells” such as dendritic cells are essential for providing help to memory B cells under such conditions. Based on these findings, we asked which co-stimulatory interactions are required for the restimulation of memory B cells in the presence of dendritic cells and ligands for TLR and whether these co-stimulatory interactions are the same as those required for the restimulation of memory B cells in the presence of activated T cells. We used spleen cells from hemophilic mice treated with human FVIII to generate highly purified populations of memory B cells, CD4+ T cells and dendritic cells. The required purity was achieved by a combination of magnetic bead separation and fluorescence-activated cell sorting. The memory B cell compartment was specified by the expression of CD19 together with IgG and the absence of surface IgM and IgD. Memory B cells were cultured in the presence of FVIII to stimulate their differentiation into anti-FVIII antibody-producing plasma cells. Different combinations of CD4+ T cells, ligands for TLR 7 and 9 and dendritic cells were added to the memory-B-cell cultures. Blocking antibodies and competitor proteins were used to specify the co-stimulatory interactions required for the re-stimulation of memory B cells in the presence of either CD4+ T cells or dendritic cells and ligands for TLR 7 and 9. Our results demonstrate that the blockade of B7-1 and B7-2 as well as the blockade of CD40L inhibit the re-stimulation of FVIII-specific memory B cells and their differentiation into anti-FVIII antibody-producing plasma cells in the presence of T-cell help. Similar requirements apply for the re-stimulation of memory B cells in the presence of dendritic cells and ligands for TLR 7 or 9. Dendritic cells in the absence of ligands for TLR are not able to provide help for the re-stimulation of memory B cells, which indicates that dendritic cells need to be activated. Furthermore, ligands for TLR 7 or 9 were not able to re-stimulate memory B cells in the complete absence of dendritic cells. Based on these results we conclude that dendritic cells activated by ligands for TLR 7 or 9 can substitute for activated CD4+ T cells in providing co-stimulatory help for memory-B-cell re-stimulation. CD40-CD40L interactions seem to be the most important co-stimulatory interactions for the re-stimulation of memory B cells, not only in the presence of activated CD4+ T cells but also in the presence of ligands for TLR and dendritic cells.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 84-84
Author(s):  
Juan Chen ◽  
Jocelyn A. Schroeder ◽  
Xiaofeng Luo ◽  
Robert R. Montgomery ◽  
Qizhen Shi

Abstract Development of inhibitory antibodies (inhibitors) against FVIII is the significant complication in protein replacement therapy for hemophilia A (HA). Currently, immune tolerance induction (ITI) with aggressive infusion of high-dose FVIII represents the only effective therapeutic approach for eradication of FVIII inhibitors and results in restoration of normal FVIII pharmacokinetics in inhibitor patients. Whether the use of FVIII products containing VWF will affect the efficacy of the ITI is still a debated issue in the treatment of inhibitor patients. In this study, we explored the impact of VWF on FVIII immune responses in HA with pre-existing anti-F8 immunity using both in vitro and in vivomodels. Since the FVIII immune response is CD4+ T cell dependent, we first investigated how VWF affects FVIII-primed CD4+ T cells in response to FVIII restimulation. To address this question, we used a T cell proliferation assay. FVIIInull (F8null) mice were immunized with recombinant human FVIII (rhF8) to induce inhibitor development. Splenocytes from primed mice were labeled with CellTrace™ Violet and cultured with rhF8 with or without rhVWF. Four days later, cells were analyzed by FACS to assess the daughter (proliferated) cell population. The percentage of daughter CD4+ T cells (14.0±7.5%) in the condition cultured with 1 U/ml of rhF8 was significantly higher than without rhF8 (3.7±1.7%, n=6). The daughter cells further increased to 21.5±10.3% when cells were incubated with 10 U/ml of rhF8. However, when rhVWF was added to the culture media in addition to rhF8, percentages of daughter CD4+ T cells were significantly decreased in both the 1 U/ml and 10 U/ml rhF8 treatment groups (10.4±7.1% and 15. 8±8.4%, respectively). To further explore how VWF affects the FVIII immune response, we analyzed cytokine profiles in T cell culture supernants using a multiplex ELISA assay. The levels of IFNg and IL10 in the groups cultured with rhF8 in the presence of rhVWF were significantly lower than in the groups cultured with rhF8 only. The levels of TNFa, IL4, IL5, and IL12 in the groups cultured with rhF8 together with rhVWF were not significantly different than those in rhF8 groups without VWF. These results demonstrated that VWF significantly suppresses rhF8-primed CD4+ T cell proliferation in response to rhF8 restimulation and the inhibition is via the Th1 pathway. In a setting of pre-existing anti-F8 immunity, how FVIII-specific memory B cells respond to FVIII-restimulation and mature to antibody secreting cells (ASCs) is the critical pathway in terms of the clinical efficacy of FVIII infusion. To investigate how VWF affects memory B cell maturation upon FVIII restimulation, we used ELISPOT-based assay. Splenocytes from rhF8-primed HA mice were used as the source to prepare F8-specific memory B cell pools. CD138+ cells were depleted and the remaining cells were used as a pool of memory B cells. To stimulate the maturation of F8-specific memory B cells into ASCs, memory B cell pools from primed F8null mice were cultured with rhF8 with or without rhVWF for 6 days. After culture, newly formed ASCs were assessed by the ELISPOT assay. There were 54.4±19.5 ASCs/106 cells when cells from memory B cell pool were cultured with 0.05 U/ml rhF8. In contrast, there was only 15.6±1.6 ASCs/106cells after the cells were cultured with rhF8 together with rhVWF, indicating that memory B cell maturation is suppressed in the presence of rhVWF. We then used an in vivo model to further evaluate the impact of VWF on the immunogenicity of FVIII in HA with pre-existing immunity. Since we are unable to mimic the human ITI in F8null mice, we transferred memory B cells from rhF8-primed F8null splenocytes into immunocompromised F8null mice followed by rhF8 immunization in the presence or absence of rhVWF. Blood samples were collected one week after immunization for analysis. The inhibitor titer in animals that received rhF8-primed memory B cell pool followed by rhF8 immunization was 45.9±63.0 BU/ml (n=11), which was significantly higher than the titer in animals immunized with rhF8 together with rhVWF (23.9±38.4, P<.01). These results demonstrate that VWF suppressed the anti-F8 memory response in vivo. In summary, our ex vivo and in vivo data demonstrated that VWF attenuates F8-primed CD4+T cells and memory B cells in response to rhF8 restimulation, suggesting that infusion of FVIII together with VWF might reduce anti-F8 memory responses in HA with inhibitors. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 118 (46) ◽  
pp. e2108157118
Author(s):  
Kerstin Narr ◽  
Yusuf I. Ertuna ◽  
Benedict Fallet ◽  
Karen Cornille ◽  
Mirela Dimitrova ◽  
...  

Chronic viral infections subvert protective B cell immunity. An early type I interferon (IFN-I)–driven bias to short-lived plasmablast differentiation leads to clonal deletion, so-called “decimation,” of antiviral memory B cells. Therefore, prophylactic countermeasures against decimation remain an unmet need. We show that vaccination-induced CD4 T cells prevented the decimation of naïve and memory B cells in chronically lymphocytic choriomeningitis virus (LCMV)-infected mice. Although these B cell responses were largely T independent when IFN-I was blocked, preexisting T help assured their sustainability under conditions of IFN-I–driven inflammation by instructing a germinal center B cell transcriptional program. Prevention of decimation depended on T cell–intrinsic Bcl6 and Tfh progeny formation. Antigen presentation by B cells, interactions with antigen-specific T helper cells, and costimulation by CD40 and ICOS were also required. Importantly, B cell–mediated virus control averted Th1-driven immunopathology in LCMV-challenged animals with preexisting CD4 T cell immunity. Our findings show that vaccination-induced Tfh cells represent a cornerstone of effective B cell immunity to chronic virus challenge, pointing the way toward more effective B cell–based vaccination against persistent viral diseases.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kristian Assing ◽  
Christian Nielsen ◽  
Marianne Jakobsen ◽  
Charlotte B. Andersen ◽  
Kristin Skogstrand ◽  
...  

Abstract Background Germinal center derived memory B cells and plasma cells constitute, in health and during EBV reactivation, the largest functional EBV reservoir. Hence, by reducing germinal center derived formation of memory B cells and plasma cells, EBV loads may be reduced. Animal and in-vitro models have shown that IL-21 can support memory B and plasma cell formation and thereby potentially contribute to EBV persistence. However, IL-21 also displays anti-viral effects, as mice models have shown that CD4+ T cell produced IL-21 is critical for the differentiation, function and survival of anti-viral CD8+ T cells able to contain chronic virus infections. Case presentation We present immunological work-up (flow-cytometry, ELISA and genetics) related to a patient suffering from a condition resembling B cell chronic active EBV infection, albeit with moderately elevated EBV copy numbers. No mutations in genes associated with EBV disease, common variable immunodeficiency or pertaining to the IL-21 signaling pathway (including hypermorphic IL-21 mutations) were found. Increased (> 5-fold increase 7 days post-vaccination) CD4+ T cell produced (p < 0.01) and extracellular IL-21 levels characterized our patient and coexisted with: CD8+ lymphopenia, B lymphopenia, hypogammaglobulinemia, compromised memory B cell differentiation, absent induction of B-cell lymphoma 6 protein (Bcl-6) dependent peripheral follicular helper T cells (pTFH, p = 0.01), reduced frequencies of peripheral CD4+ Bcl-6+ T cells (p = 0.05), compromised plasmablast differentiation (reduced protein vaccine responses (p < 0.001) as well as reduced Treg frequencies. Supporting IL-21 mediated suppression of pTFH formation, pTFH and CD4+ IL-21+ frequencies were strongly inversely correlated, prior to and after vaccination, in the patient and in controls, Spearman’s rho: − 0.86, p < 0.001. Conclusions To the best of our knowledge, this is the first report of elevated CD4+ IL-21+ T cell frequencies in human EBV disease. IL-21 overproduction may, apart from driving T cell mediated anti-EBV responses, disrupt germinal center derived memory B cell and plasma cell formation, and thereby contribute to EBV disease control.


2020 ◽  
Vol 11 ◽  
Author(s):  
Austin Negron ◽  
Olaf Stüve ◽  
Thomas G. Forsthuber

While the contribution of autoreactive CD4+ T cells to the pathogenesis of Multiple Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody (mAb) therapies has shed new light on the complex cellular mechanisms underlying MS pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent and -independent capacities. T cell-dependent B cell responses originate and take shape in germinal centers (GCs), specialized microenvironments that regulate B cell activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory B cells, a process for which CD4+ T cells, namely follicular T helper (TFH) cells, are indispensable. ASCs carry out their effector function primarily via secreted Ig but also through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in addition to being capable of rapidly differentiating into ASCs, can function as potent antigen-presenting cells (APCs) to cognate memory CD4+ T cells. Aberrant B cell responses are prevented, at least in part, by follicular regulatory T (TFR) cells, which are key suppressors of GC-derived autoreactive B cell responses through the expression of inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore, GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has been implicated in the pathogenesis of several autoimmune diseases. In MS patients, the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted their investigation as potential sources of pathogenic B and T cell responses. This hypothesis is supported by elevated levels of CXCL13 and circulating TFH cells in the cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and maintain GC reactions. Additionally, eLFs in post-mortem MS patient samples are notably devoid of TFR cells. The ability of GCs to generate and perpetuate, but also regulate autoreactive B and T cell responses driving MS pathology makes them an attractive target for therapeutic intervention. In this review, we will summarize the evidence from both humans and animal models supporting B cells as drivers of MS, the role of GC-like eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive B cell responses in MS.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jean-François Daudelin ◽  
Mélissa Mathieu ◽  
Salix Boulet ◽  
Nathalie Labrecque

Following activation, naïve CD8+T cells will differentiate into effectors that differ in their ability to survive: some will persist as memory cells while the majority will die by apoptosis. Signals given by antigen-presenting cells (APCs) at the time of priming modulate this differential outcome. We have recently shown that, in opposition to dendritic cell (DC), CD40-activated B-(CD40-B) cell vaccination fails to efficiently produce CD8+memory T cells. Understanding why CD40-B-cell vaccination does not lead to the generation of functional long-lived memory cells is essential to define the signals that should be provided to naïve T cells by APCs. Here we show that CD40-B cells produce very low amount of IL-6 when compared to DCs. However, supplementation with IL-6 during CD40-B-cell vaccination did not improve memory generation. Furthermore, IL-6-deficient DCs maintained the capacity to promote the formation of functional CD8+effectors and memory cells. Our results suggest that in APC vaccination models, IL-6 provided by the APCs is dispensable for proper CD8+T-cell memory generation.


Sign in / Sign up

Export Citation Format

Share Document