scholarly journals Bone marrow stromal cell transplantation ameliorates cytopenia caused by depletion FAP-α expressing cells

2020 ◽  
Author(s):  
Eva Camarillo-Retamosa ◽  
Luke Watson ◽  
Paul Loftus ◽  
Senthil Alagesan ◽  
Yvonne O’Donoghue ◽  
...  

AbstractThe marrow microenvironment is a complex and heterogeneous mixture of hematopoietic and stromal progenitors necessary for haematopoiesis. Whilst the hematopoietic progenitors are well described, the stromal cellular composition is not fully elucidated due to the low cells numbers, localisation-distribution-accessibility, and the lack of specific biomarkers. Cellular taxonomy studies have recently identified new populations of stromal subsets with distinct gene signature and regulatory properties of hematopoietic regeneration. Fibroblast activation protein-α (FAP), a stromal cell type first identified in cancer is also rarely found in normal tissues but might play an essential role in tissue homeostasis. Using FAPDM2 transgenic mouse in which FAP-expressing cells can be ablated with Diphtheria Toxin (DTX) FAP+ cells were depleted in healthy mice. Whilst FAP+ cells constituted 5% of all marrow cells; its ablation caused a rapid loss of PDGFR-α, Leptin-R, gp38 and SDC2 stromal cells populations, endothelial cells and vascular disruption. These resulted in anaemia, thrombocytopenia and neutropenia in peripheral blood (PB) and extreme hypo-cellularity in marrow with abnormalities within the hematopoietic progenitors. In an effort to reverse the phenotypes caused by FAP+ cell loss, a single intravenous injection of syngeneic bone marrow-derived stromal cells was administered. In a short-term evaluation, anaemia, thrombocytopenia and neutropenia ameliorated in PB and the numbers of marrow hematopoietic progenitors increased. Our data suggest FAP-expressing cells are a non-redundant component of the marrow microenvironment, necessary for marrow homeostasis and haematopoiesis. These data also provided evidence that stromal cell ablation can be rescued by stromal cell therapy.Significance StatementFAP-expressing cells depletion led to collateral damage in PB and marrow, including haematological defects that can be ameliorated by adoptive transfer of low-dose, ex-vivo expanded FAP-expressing marrow stromal cells. We suggest that stromal cell loss is a feature of severe immune-mediated inflammatory diseases – such as Graft versus Host Disease and sepsis - and that FAPDM2 model represents a novel tool to explore the native function of the recently identified stromal cell sub-populations.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 222-222
Author(s):  
Oliver Herd ◽  
Maria Abril Arredondo Garcia ◽  
James Hewitson ◽  
Karen Hogg ◽  
Saleni Pravin Kumar ◽  
...  

Immune thrombocytopenia (ITP) is an acquired autoimmune disease characterised by low platelet counts (<100 x 109/L) and manifests as a bleeding tendency. The demand on hematopoiesis is elevated in chronic ITP, where sustained platelet destruction mediated by an activated immune system is likely to cause considerable stress on progenitor populations. Intriguingly, this increased stress does not appear to result in functional exhaustion, as chronic ITP patients do not present with pancytopenia. By using a novel murine model of chronic ITP, generated by injecting mice with anti-CD41 antibody (ITP group) or IgG (control group) every 48hrs for 4 weeks, we aimed to define the effect of chronic ITP on hematopoietic progenitors and to elucidate the mechanisms behind the preservation of hematopoiesis. The relative numbers of hematopoietic progenitors in mice with chronic ITP vs controls were analysed by flow cytometry and their fitness was assessed by measuring their relative ability to reconstitute the hematopoietic system of lethally irradiated recipients. There was a significant increase in all hematopoietic progenitors analysed in ITP: 2.96-fold increase in multipotent progenitors, 4.66-fold increase in short-term hematopoietic stem cells (ST-HSCs) and 4.93-fold increase in long-term hematopoietic stem cells (LT-HSCs), which led to an increased ability of ITP donor bone marrow to reconstitute irradiated recipients. The results indicate that chronic ITP drives LT-HSCs out of quiescence and causes increased differentiation into committed progenitors in order to meet the increased demand in platelet production. In support of this, increased megakaryopoiesis was observed in chronic ITP, with a 60.5% increase in the number of megakaryocytes observed in bone marrow sections. Interestingly, similar to the clinical manifestation of ITP, we observed no change in levels of circulating TPO in our ITP model. Next, the effect of chronic ITP on the bone marrow microenvironment was determined due to its essential role in the support and maintenance of hematopoiesis. Histological analysis of bone marrow from mice with chronic ITP (Figure 1) revealed a 66.7% increase in the numbers of LepR+/ Cxcl12-DsRed stromal cells. LepR+/ Cxcl12-DsRed stromal cells are a well characterised stromal cell subset, known to be essential for maintenance and retention of HSCs in the bone marrow microenvironment. During chronic ITP, this stromal cell subset maintained their classically defined perivascular location and retained their ability to produce high levels of hematosupportive cytokines (Cxcl12 and Kitl). Chronic ITP was associated with a significant increase in total bone marrow expression (Cxcl12=2.39-fold increase; Kitl=1.71-fold increase), pointing to perivascular stromal cell expansion as being the source of increased local hematopoietic support. Analysis of the bone marrow vascular network revealed that the average vessel area was increased in chronic ITP (54.3% increase), whilst the number of vessels remained unchanged implying that the marrow sinusoids are vasodilated. We hypothesise that an increase in blood vessel area would aid the extravasation of circulating HSCs back into the bone marrow microenvironment where they would contribute to hematopoiesis. By developing an accurate mouse model of chronic ITP, we have identified key alterations in HSCs and the bone marrow microenvironment. Our data clearly demonstrates that in chronic ITP, HSCs are driven out of quiescence and expand in number in order to contribute to the increased demand for hematopoiesis. Furthermore, the bone marrow microenvironment adapts to this increased differentiation pressure on HSCs by creating a hematosupportive, quiescence promoting environment through the expansion of bone marrow stromal cells, and an increase in blood vessel area. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Αριστέα Μπάτσαλη

Συνεχώς αυξανόμενο είναι το ενδιαφέρον για τη χρήση των αρχέγονων μεσεγχυματικών κυττάρων (Mesenchymal Stem/Stromal Cells–MSCs) σε κλινικές εφαρμογές. Το ενδεχόμενο MSCs από ποικίλες πηγές να ικανοποιούν διαφορετικές κλινικές εφαρμογές μας ώθησε στην παρούσα μελέτη. Έτσι πραγματοποίησαμε μια συγκριτική μελέτη των βιολογικών ιδιοτήτων MSCs προερχόμενων από τη γέλη του Wharton (Wharton’s Jelly–WJ), την πιο πλούσια πηγή MSCs του ομφαλίου λώρου, και MSCs από τον μυελό των οστών (Bone Marrow–BM), του πιο εκτενώς μελετημένου πληθυσμού μεσεγχυματικών κυττάρων.Στη διάρκεια της μελέτης, MSCs απομονώθηκαν από τον μυελό αιματολογικά υγιών δοτών (n=18) και από τη γέλη του Wharton νεογνών πλήρους κυήσεως (n=18).Τα MSCs καλλιεργήθηκαν ex vivo για συνολικά δέκα ανακαλλιέργειες (Passage–P)υπό τις ίδιες συνθήκες. Σε παράλληλα πειράματα μελετήθηκαν τα ανοσοφαινοτυπικά χαρακτηριστικά των κυττάρων καθώς και χαρακτηριστικά που αφορούν την επιβίωση και την κυτταρική γήρανση όπως το δυναμικό πολλαπλασιασμού και η κατανομή τούς στον κυτταρικό κύκλο. Επιπλέον εκτιμήθηκε η έκφραση γονιδίων που σχετίζονται με τα σηματοδοτικά μονοπάτια του Wnt και του κυτταρικού κύκλου, ενώ πραγματοποιήθηκε και κυτταρογενετική ανάλυση των ex vivo καλλιεργούμενων MSCs ώστε να εκτιμηθεί η γενωμική τούς σταθερότητα.Επιπροσθέτως, μελετήθηκε η ικανότητα των MSCs, και από τις δύο πηγές, να υποστηρίζουν την ανάπτυξη αρχέγονων αιμοποιητικών κυττάρων, εκτιμώντας τη κλωνογονική ικανότητα των μη-προσκολλούμενων κυττάρων (Non Adherent Cells–NACs) σε συν‐καλλιέργειες φυσιολογικών CD34+ κυττάρων, με BM-MSCs ή WJMSCs.Επίσης μετρήθηκαν τα επίπεδα κυτταροκινών που σχετίζονται με την αιμοποίηση στα υπερκείμενα των MSC καλλιεργειών. Τέλος, εκτιμήθηκε η ικανότητα διαφοροποίησης των MSCs προς λιποκύτταρα και οστεοκύτταρα καθώς και η επίδραση των σχετιζόμενων με το Wnt-μονοπάτι μορίων WISP1 και sFRP4 στο δυναμικό διαφοροποίησης των WJ- MSCs.Από την ανάλυση των αποτελεσμάτων φάνηκε πως και οι δυο exvivo καλλιεργούμενοι MSC πληθυσμοί (BM-MSCs ή WJ-MSCs) εμφανίζουν παρόμοια μορφολογικά και ανοσοφαινοτυπικά χαρακτηριστικά. Επιπλέον δεν διέφεραν ως προς χαρακτηριστικά επιβίωσης και κυτταρικής γήρανσης, ενώ φάνηκε να φέρουν γενετικές αλλαγές σε πολύ χαμηλή συχνότητα στη διάρκεια των ανακαλλιεργειών. Τα WJ-MSCsεμφάνισαν υψηλότερο δυναμικό πολλαπλασιασμού, πιθανότατα λόγω ενεργοποίησης γονιδίων που διεγείρουν τον κυτταρικό πολλαπλασιασμό και ταυτόχρονης υποέκφρασης γονιδίων που αναστέλλουν τον κυτταρικό κύκλο. Ωστόσο, τα WJMSCsπαρουσίασαν μειωμένη ενδογενή δέσμευση προς κάποια σειρά (lineagepriming)καθώς και μειωμένη ικανότητα διαφοροποίησης προς οστεοκύτταρα και λιποκύτταρα, συγκριτικά με τα BM-MSCs. Το παραπάνω εύρημα συσχετίστηκε με τη διαφορετική έκφραση μορίων που σχετίζονται με το Wnt-σηματοδοτικό μονοπάτι,περιλαμβανομένων των WISP1 και sFRP4, και διερευνήθηκε αντιστοίχως η εμπλοκήτου καθενός μορίου στη διαφοροποίηση των WJ-MSCs. Μάλιστα χορήγηση των ανασυνδιασμένων ανθρώπινων πρωτεϊνών WISP1 και sFRP4 στα καλλιεργούμενα WJ-MSCs οδήγησε σε επαγωγή και βελτίωση της οστεογενετικής και λιπογενετικής ικανότητας των κυττάρων, αντιστοίχως. Τέλος, τα WJ-MSCs εμφάνισαν μειωμένη ικανότητα να υποστηρίζουν την αιμοποίηση σε σχέση με τα ομολογά τους μυελικά, πιθανότατα εξαιτίας της μειωμένης παραγωγής του παράγοντα του«στρώματος» SDF-1α (stromal cell-derived factor-1α).Συμπερασματικά τα μέχρι στιγμής δεδομένα συμβάλλουν στον καλύτερο χαρακτηρισμό των WJ-MSCs και των BM-MSCs αναδεικνύοντας τις ιδιαίτερες βιολογικές τους ιδιότητες, που θα πρέπει να λαμβάνονται υπόψιν κατά την επιλογή της καλύτερης πηγής MSCs για καθεμιά κλινική εφαρμογή.


2019 ◽  
Author(s):  
Rebecca Cornelis ◽  
Stefanie Hahne ◽  
Adriano Taddeo ◽  
Georg Petkau ◽  
Darya Malko ◽  
...  

SummaryPersistence of long-lived, memory plasma cells in the bone marrow depends on survival factors available in the bone marrow, provided in niches organized by stromal cells. Here we describe that ex vivo we can prevent apoptosis of bone marrow plasma cells by supplying direct cell contact with stromal cells and the soluble cytokine APRIL. Integrin-mediated contact of bone marrow plasma cells with stromal cells activates the PI3K signaling pathway, leading to critical inactivation of FoxO1/3 and preventing the activation of mitochondrial stress-associated effector caspases 3 and 7. Likely, inhibition of PI3K signaling in vivo ablates bone marrow plasma cells. APRIL signaling, via the NF-κB pathway, blocks activation of the endoplasmic reticulum stress-associated initiator caspase 12. Thus, stromal cell-contact induced PI3K and APRIL-induced NF-κB signaling provide necessary and complementary signals to maintain bone marrow memory plasma cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2455-2455
Author(s):  
Bijender Kumar ◽  
Lihong Weng ◽  
Xiaoman Lewis ◽  
Jodi Murakami ◽  
Xingbin Hu ◽  
...  

Abstract Increasing evidence suggests that leukemia cells take shelter in the bone marrow (BM) microenvironment (niche), where they hide from chemotherapy and continue to divide. As yet, the identity of niche cells and secreted factors that facilitate leukemia cell growth and assist them in evading chemotherapy is unclear. Further, how leukemia cells alter the bone marrow microenvironment is not known yet. In this study, we provide compelling evidences of a novel role of leukemia-derived exosomes in altering the microenvironment constituents by paracrine mechanisms.As proof-of-concept, we analyzed the cytokines mRNA profiles of primary human and mouse stromal cell co-cultured with primary CD34+CD38- cells from AML patients. Stromal cells co-cultured with leukemia showed increased levels of IL-6, IL-1β, VEGFα, TNF and reduced SDF1 mRNA expression. Similar pattern of gene expression changes were observed from stroma cells co-cultured with leukemia-derived exosomes.By using CFSE labeled exosomes, we observed that leukemia-derived exosomes target marrow stromal and endothelial cells both in-vitro and in-vivo directly. In our in vivo AML model, established using xenografted AML cell lines or primary AML patient samples in Rag2-/- γc-/-mice, we observed expansion of LT-HSC and hematopoietic progenitors compartment. The leukemia animals also showed cellular composition changes in the stromal compartment suggesting osteoblast differentiation was blocked. Interestingly, milder but similar changes were observed in mice treated with leukemia-derived exosomes. Exosomes derived from normal human peripheral blood did not induce significant changes in either hematopoietic or stromal compartments in recipient mice. These data indicate that leukemia cells secrete specialized exosomes to modulate the BM microenvironment. Fluidigm dynamic array analysis of BM stromal cells from leukemic mice revealed that the cell adhesion molecules (NCAM1, VCAM1, CD44, OPN & ICAM1) and factors important for angiogenesis (Angpt1, Angpt 2 &VEGF) were all upregulated in leukemia-modified stromal cells whereas genes important for osteoblast (OCN, OSX), chondrocyte (SOX9) development and HSC maintenance (SDF1 and SCF) were down regulated. These results suggest that leukemia cells can remodel the BM microenvironment by changing the stromal cell composition and influencing expression of important molecular regulators. To evaluate the HSC functions in exosomes-treated mice, we used 5-fluorouracil (5-FU) to suppress hematopoiesis and induce myeloablative stress. Leukemia-derived exosome-pretreated mice succumbed to death earlier compared to the control group (p=0.0001) suggesting that HSCs from leukemia-derived exosome-treated mice may have lower stem cell activity than their counterparts from normal mice. Furthermore, more LT-HSC and hematopoietic progenitors from leukemia-derived exosome-pretreated mice were in active cell cycle (p=0.004 and p=0.01 respectively). These findings support our hypothesis that leukemia cells/exosomes directly or indirectly through leukemia-modified niche, altered the HSCs physiological and quiescence properties. Next we analyzed the ability of leukemia-modified niche to support the normal hematopoiesis. We co-cultured freshly sorted normal CD45.2 LT-HSCs (LSK CD150+CD48-Flk2-) with leukemia cells/exosomes pre-treated stroma cells for 48 hours and transplanted the co-cultured HSC into irradiated CD45.1 mice. 18 weeks after transplantation, we observed a significantly decreased engraftment of the HSCs co-cultured with leukemic cells/exosomes stroma compared with the HSCs co-cultured with normal stroma (p=0.003). Finally, leukemia engrafted better and developed more rapidly (p=0.0026) in mice that received leukemia-derived exosomes pre-treatment. These data suggest that changes induced by leukemia-derived exosomes in the BM niche accelerate leukemia progression and decrease their ability to support HSCs. Collectively, our data demonstrate that the leukemia cells manipulate the bone marrow microenvironment, partly through leukemia-derived exosomes, to suppress the normal hematopoiesis and facilitate growth of the leukemic progeny. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2003 ◽  
Vol 101 (2) ◽  
pp. 532-540 ◽  
Author(s):  
Yutaka Kawano ◽  
Masayoshi Kobune ◽  
Miki Yamaguchi ◽  
Kiminori Nakamura ◽  
Yoshinori Ito ◽  
...  

We developed a new human stromal cell line that could expand human hematopoietic progenitor/stem cells. Primary human bone marrow stromal cells were infected with retrovirus containing the human telomerase catalytic subunit (hTERT) gene, resulting in increased population doubling and the acquisition of cell immortalization. Characteristics of the hTERT-transduced stromal (hTERT-stromal) cells were identical with those of the primary stromal cells in terms of morphologic appearance and expression of surface antigens. Human cord blood (CB) CD34+ cells were expanded by coculture with primary stromal or hTERT-stromal cells in the presence of stem cell factor, thrombopoietin, and Flk-2/Flt-3 ligand under serum-free condition. The degree of expansion of CD34+ cells and total number of colony-forming units in culture (CFU-Cs) after 2 weeks' coculture with the hTERT-stromal cells were nearly the same as those after 2 weeks' coculture with primary stromal cells (CD34+ cells, 118-fold ± 8-fold versus 117-fold ± 13-fold; CFU-Cs, 71-fold ± 5-fold versus 67-fold ± 5-fold of initial cell number). CB expansion on hTERT-stromal cells occurred at a similar rate through 7 weeks. In contrast, the rate of CB expansion on primary stromal cells had drastically declined at 7 weeks. In nonobese diabetic/severe combined immunodeficiency (SCID) mice, the degree of engraftment of SCID-repopulating cells that had been cocultured with hTERT-stromal cells for 4 weeks was significantly higher than that of precocultured CB cells. These results indicate that this hTERT-stromal cell line could be useful for ex vivo expansion of hematopoietic progenitor/stem cells and for analyzing the microenvironment of human bone marrow.


1991 ◽  
Vol 113 (2) ◽  
pp. 171-177 ◽  
Author(s):  
B. A. Naughton ◽  
A. Tjota ◽  
B. Sibanda ◽  
G. K. Naughton

A three-dimensional culture system for the growth of primate and rodent bone marrow was developed in our laboratory. This method involves the seeding of stromal cells onto a nylon screen and the inoculation of fresh or cryopreserved bone marrow hematopoietic cells after stromal cell processes had extended across 3 to 4 out of every 5 mesh openings. Stromal cells attach, grow, and secrete matrix proteins which contribute to an intricate microenvironment for the support of multilineage hematopoiesis, which was observed for >270 days in the rat model and for >12 weeks in the human system, as evidenced by flow cytometry analysis and in vitro clonogenic assays. The adherent zones of these suspended nylon screen cultures consisted primarily of immature cells. These cultures could also be used as substrates for cytotoxicity measurements; treatment of rat bone marrow cultures of various ages with cytosine β-D arabinofuranoside, cyclophosphamide, 5-fluorouracil, or methotrexate resulted in a dose-dependent decrease in CFU-C numbers and altered the phenotypic distribution of hematologic cells in the adherent zone. The use of a modification of this method to generate large numbers of active cytolytic cells after >75 days culture of rat bone marrow-derived natural killer cells is described also. Suspended nylon screen bone marrow culture also has potential uses in genetic insertion and graft vs. host disease studies, blood component therapy, the evaluation of ex vivo purging programs, and in marrow expansion for transplantation.


2013 ◽  
Vol 18 (6) ◽  
pp. 637-646 ◽  
Author(s):  
Kristine Misund ◽  
Katarzyna A. Baranowska ◽  
Toril Holien ◽  
Christoph Rampa ◽  
Dionne C. G. Klein ◽  
...  

The tumor microenvironment can profoundly affect tumor cell survival as well as alter antitumor drug activity. However, conventional anticancer drug screening typically is performed in the absence of stromal cells. Here, we analyzed survival of myeloma cells co-cultured with bone marrow stromal cells (BMSC) using an automated fluorescence microscope platform, ScanR. By staining the cell nuclei with DRAQ5, we could distinguish between BMSC and myeloma cells, based on their staining intensity and nuclear shape. Using the apoptotic marker YO-PRO-1, the effects of drug treatment on the viability of the myeloma cells in the presence of stromal cells could be measured. The method does not require cell staining before incubation with drugs, and less than 5000 cells are required per condition. The method can be used for large-scale screening of anticancer drugs on primary myeloma cells. This study shows the importance of stromal cell support for primary myeloma cell survival in vitro, as half of the cell samples had a marked increase in their viability when cultured in the presence of BMSC. Stromal cell–induced protection against common myeloma drugs is also observed with this method.


1991 ◽  
Vol 114 (3) ◽  
pp. 557-565 ◽  
Author(s):  
K Miyake ◽  
K Medina ◽  
K Ishihara ◽  
M Kimoto ◽  
R Auerbach ◽  
...  

Two new mAbs (M/K-1 and M/K-2) define an adhesion molecule expressed on stromal cell clones derived from murine bone marrow. The protein is similar in size to a human endothelial cell adhesion molecule known as VCAM-1 or INCAM110. VCAM-1 is expressed on endothelial cells in inflammatory sites and recognized by the integrin VLA-4 expressed on lymphocytes and monocytes. The new stromal cell molecule is a candidate ligand for the VLA-4 expressed on immature B lineage lymphocytes and a possible homologue of human VCAM-1. We now report additional similarities in the distribution, structure, and function of these proteins. The M/K antibodies detected large cells in normal bone marrow, as well as rare cells in other tissues. The antigen was constitutively expressed and functioned as a cell adhesion molecule on cultured murine endothelial cells. It correlated with the presence of mRNA which hybridized to a human VCAM-1 cDNA probe. Partial NH2 terminal amino acid sequencing of the murine protein revealed similarities to VCAM-1 and attachment of human lymphoma cells to murine endothelial cell lines was inhibited by the M/K antibodies. All of these observations suggest that the murine and human cell adhesion proteins may be related. The antibodies selectively interfered with B lymphocyte formation when included in long term bone marrow cultures. Moreover, they caused rapid detachment of lymphocytes from the adherent layer when added to preestablished cultures. The VCAM-like cell adhesion molecule on stromal cells and VLA-4 on lymphocyte precursors may both be important for B lymphocyte formation.


Sign in / Sign up

Export Citation Format

Share Document