scholarly journals Structural refinement of the auditory brainstem neurons in baboons during perinatal development

2020 ◽  
Author(s):  
Eun-Jung Kim ◽  
Kaila Nip ◽  
Cynthia Blanco ◽  
Jun Hee Kim

AbstractChildren born prematurely suffer from learning disabilities and exhibit reading, speech, and cognitive difficulties, which are associated with an auditory processing disorder. However, it is unknown whether gestational age at delivery and the unnatural auditory environment in neonatal intensive care units (NICU) collectively affect proper auditory development and neuronal circuitry in premature newborns. We morphologically characterized fetal development of the medial superior olivary nucleus (MSO), an area important for binaural hearing and sound localization, in the auditory brainstem of baboon neonates at different gestational ages. Axonal and synaptic structures and the tonotopic differentiation of ion channels in the MSO underwent profound refinements after hearing onset in the uterus. In preterm baboon neonates, these developmental refinements of the MSO were significantly altered by limited maternal sound inputs from the isolated and unnatural environment in the NICU. Thus, the maternal environment, including auditory stimuli in uterus, is essential for auditory nervous system development during the last trimester of pregnancy and critically affects the anatomic and functional formation of synapses and neural circuitry in the preterm newborn brain.

2021 ◽  
Vol 15 ◽  
Author(s):  
Eun Jung Kim ◽  
Kaila Nip ◽  
Cynthia Blanco ◽  
Jun Hee Kim

Children born prematurely suffer from learning disabilities and exhibit reading, speech, and cognitive difficulties, which are associated with an auditory processing disorder. However, it is unknown whether gestational age at delivery and the unnatural auditory environment in neonatal intensive care units (NICU) collectively affect proper auditory development and neuronal circuitry in premature newborns. We morphologically characterized fetal development of the medial superior olivary nucleus (MSO), an area important for binaural hearing and sound localization, in the auditory brainstem of baboon neonates at different gestational ages. Axonal and synaptic structures and the tonotopic differentiation of ion channels in the MSO underwent profound refinements after hearing onset in the uterus. These developmental refinements of the MSO were significantly altered in preterm baboon neonates in the NICU. Thus, the maternal environment in uterus is critical for auditory nervous system development during the last trimester of pregnancy and critically affects the anatomic and functional formation of synapses and neural circuitry in the preterm newborn brain.


2021 ◽  
Author(s):  
Pei Jiang ◽  
Xiangyu Ma ◽  
Shanying Han ◽  
Leyao Ma ◽  
Jingru Ai ◽  
...  

Abstract The cochlea is an important sensory organ for both balance and sound perception, and the formation of the cochlea is a complex developmental process. The development of the mouse cochlea begins on embryonic day (E)9 and continues until postnatal day (P)21 when the hearing system is considered mature. Small extracellular vesicles (sEVs), with a diameter ranging from 30 nm to 200 nm, have been considered as a significant medium for information communication in both the processing of physiological and pathological. However, there are no studies exploring the role of sEVs in the development of the cochlea. Here, we isolated tissue-derived sEVs from the cochleae of FVB mice at P3, P7, P14, and P21 by ultracentrifugation. These sEVs were first characterized by transmission electron microscopy, nanoparticle tracking analysis, and western blotting. Next, we used small RNA-seq and mass spectrometry to characterize the microRNA transcriptomes and proteomics of cochlear sEVs from mice at different ages. Many microRNAs and proteins were discovered to be related with inner ear development, anatomical structure development, and the auditory nervous system development. These results all suggest that sEVs exist in the cochlea and are likely to be essential for the normal development of the auditory system. Our findings provide many sEV microRNA and protein targets for future studies of the roles of cochlear sEVs.


Author(s):  
М.Е. Лопаткина ◽  
В.С. Фишман ◽  
М.М. Гридина ◽  
Н.А. Скрябин ◽  
Т.В. Никитина ◽  
...  

Проведен анализ генной экспрессии в нейронах, дифференцированных из индуцированных плюрипотентных стволовых клеток пациентов с идиопатическими интеллектуальными нарушениями и реципрокными хромосомными мутациями в регионе 3p26.3, затрагивающими единственный ген CNTN6. Для нейронов с различным типом хромосомных аберраций была показана глобальная дисрегуляция генной экспрессии. В нейронах с вариациями числа копий гена CNTN6 была снижена экспрессия генов, продукты которых вовлечены в процессы развития центральной нервной системы. The gene expression analysis of iPSC-derived neurons, obtained from patients with idiopathic intellectual disability and reciprocal microdeletion and microduplication in 3p26.3 region affecting the single CNTN6 gene was performed. The global gene expression dysregulation was demonstrated for cells with CNTN6 copy number variation. Gene expression in neurons with CNTN6 copy number changes was downregulated for genes, whose products are involved in the central nervous system development.


2008 ◽  
Vol 1 (4) ◽  
pp. A353
Author(s):  
Shenandoah Robinson ◽  
Qing Li

Introduction Many infants born very preterm who suffer brain damage most likely experienced a combined insult from intrauterine infection and placental insufficiency. Damage is thought to be synergistic rather than additive but the mechanisms of combined injury remain elusive. A combination of lipopolysaccharide-induced inflammation and hypoxia-ischemia has been used in rats to model the dual insult that occurs in human infants prenatally. Erythropoietin, a pleiotrophic cytokine that is essential for central nervous system development, ameliorates brain injury after isolated hypoxic-ischemic or inflammatory insults through different intracellular signaling pathways. We hypothesized that exogenous neonatal EPO administration would lessen the damage of a combined prenatal insult in rats. Methods On embryonic Day 18 fetal rats experienced 60 minutes of transient uterine artery occlusion with or without intracervical LPS administration with sham controls receiving surgery but no occlusion and saline for LPS. Survival was recorded and histological biochemical and functional assays were performed. Means were compared with ANOVA with Tukey HSD post hoc analysis. Results After a combined insult of HI and 0.15-mg/kg LPS on E18 the survival of pups by postnatal Day 1 (P1) decreased from 77% with HI alone to 22% for LPS plus HI. When exogenous systemic EPO was administered P1–P3 survival to P9 improved markedly from 40% (2 of 5) for saline-treated insult pups to 100% (6 of 6) for EPO-treated. Initial histological analyses show EPO decreases the number of brain activated caspase 3 and activated microglia by P9. Additional analyses will be presented. Conclusion As at least 60% of placentas from infants born pre-term show evidence of chorioamnionitis, assessment of the impact of exogenous EPO on a model of a combination injury is essential prior to proceeding with a clinical trial. Initial results indicate neonatal exogenous EPO mitigates damage from the combined insult.


2013 ◽  
Vol 14 (2) ◽  
pp. 160-166
Author(s):  
Diego Gazzolo ◽  
Laura D. Serpero ◽  
Alessandro Frigiola ◽  
Raul Abella ◽  
Alessandro Giamberti ◽  
...  

2020 ◽  
Vol 20 (17) ◽  
pp. 1781-1790
Author(s):  
Noor Anisah Abu Yazit ◽  
Norsham Juliana ◽  
Srijit Das ◽  
Nur Islami Mohd Fahmi Teng ◽  
Nadia Mohd Fahmy ◽  
...  

Postoperative Cognitive Dysfunction (POCD) refers to the condition of neurocognitive decline following surgery in a cognitive and sensory manner. There are several risk factors, which may be life-threatening for this condition. Neuropsychological assessment of this condition is very important. In the present review, we discuss the association of apolipoprotein epsilon 4 (APOE ε4) and few miRNAs with POCD, and highlight the clinical importance for prognosis, diagnosis and treatment of POCD. Microarray is a genome analysis that can be used to determine DNA abnormalities. This current technique is rapid, efficient and high-throughout. Microarray techniques are widely used to diagnose diseases, particularly in genetic disorder, chromosomal abnormalities, mutations, infectious diseases and disease-relevant biomarkers. MicroRNAs (miRNAs) are a class of non-coding RNAs that are widely found distributed in eukaryotes. Few miRNAs influence the nervous system development, and nerve damage repair. Microarray approach can be utilized to understand the miRNAs involved and their pathways in POCD development, unleashing their potential to be considered as a diagnostic marker for POCD. This paper summarizes and identifies the studies that use microarray based approaches for POCD analysis. Since the application of microarray in POCD is expanding, there is a need to review the current knowledge of this approach.


2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Melis Savasan Sogut ◽  
Chitra Venugopal ◽  
Basak Kandemir ◽  
Ugur Dag ◽  
Sujeivan Mahendram ◽  
...  

Elk-1, a member of the ternary complex factors (TCFs) within the ETS (E26 transformation-specific) domain superfamily, is a transcription factor implicated in neuroprotection, neurodegeneration, and brain tumor proliferation. Except for known targets, c-fos and egr-1, few targets of Elk-1 have been identified. Interestingly, SMN, SOD1, and PSEN1 promoters were shown to be regulated by Elk-1. On the other hand, Elk-1 was shown to regulate the CD133 gene, which is highly expressed in brain-tumor-initiating cells (BTICs) and used as a marker for separating this cancer stem cell population. In this study, we have carried out microarray analysis in SH-SY5Y cells overexpressing Elk-1-VP16, which has revealed a large number of genes significantly regulated by Elk-1 that function in nervous system development, embryonic development, pluripotency, apoptosis, survival, and proliferation. Among these, we have shown that genes related to pluripotency, such as Sox2, Nanog, and Oct4, were indeed regulated by Elk-1, and in the context of brain tumors, we further showed that Elk-1 overexpression in CD133+ BTIC population results in the upregulation of these genes. When Elk-1 expression is silenced, the expression of these stemness genes is decreased. We propose that Elk-1 is a transcription factor upstream of these genes, regulating the self-renewal of CD133+ BTICs.


Genetics ◽  
2004 ◽  
Vol 166 (2) ◽  
pp. 835-881 ◽  
Author(s):  
Jennifer K Inlow ◽  
Linda L Restifo

Abstract Affecting 1-3% of the population, mental retardation (MR) poses significant challenges for clinicians and scientists. Understanding the biology of MR is complicated by the extraordinary heterogeneity of genetic MR disorders. Detailed analyses of >1000 Online Mendelian Inheritance in Man (OMIM) database entries and literature searches through September 2003 revealed 282 molecularly identified MR genes. We estimate that hundreds more MR genes remain to be identified. A novel test, in which we distributed unmapped MR disorders proportionately across the autosomes, failed to eliminate the well-known X-chromosome overrepresentation of MR genes and candidate genes. This evidence argues against ascertainment bias as the main cause of the skewed distribution. On the basis of a synthesis of clinical and laboratory data, we developed a biological functions classification scheme for MR genes. Metabolic pathways, signaling pathways, and transcription are the most common functions, but numerous other aspects of neuronal and glial biology are controlled by MR genes as well. Using protein sequence and domain-organization comparisons, we found a striking conservation of MR genes and genetic pathways across the ∼700 million years that separate Homo sapiens and Drosophila melanogaster. Eighty-seven percent have one or more fruit fly homologs and 76% have at least one candidate functional ortholog. We propose that D. melanogaster can be used in a systematic manner to study MR and possibly to develop bioassays for therapeutic drug discovery. We selected 42 Drosophila orthologs as most likely to reveal molecular and cellular mechanisms of nervous system development or plasticity relevant to MR.


Sign in / Sign up

Export Citation Format

Share Document