scholarly journals Intracellular softening and fluidification reveals a mechanical switch of cytoskeletal material contributions during division

2021 ◽  
Author(s):  
Sebastian Hurst ◽  
Bart E. Vos ◽  
Timo Betz

The life and death of an organism depends largely on correct cell division. While the overall biochemical signaling and morphological processes during mitosis are well understood, the importance of mechanical forces and material properties is only just starting to be discovered. Recent studies of global cell stiffening during cell division may imply an understanding of the cytosol mechanics that is mistaken. Here we show that in contrast to the stiffening process in the cell cortex, the interior of the cell undergoes a softening and fluidification that is accompanied by a decrease of active forces driving particle mobility. Using optical tweezers-based microrheology we capture the complex active and passive material state of the cytoplasm using only six relevant parameters. We demonstrate that the softening occurs because of a surprising role switch between microtubules and actin, where the intracellular, actin-based mechanics is largely controlled by a formin-mediated network.

Author(s):  
Ann Cleary

Microinjection of fluorescent probes into living plant cells reveals new aspects of cell structure and function. Microtubules and actin filaments are dynamic components of the cytoskeleton and are involved in cell growth, division and intracellular transport. To date, cytoskeletal probes used in microinjection studies have included rhodamine-phalloidin for labelling actin filaments and fluorescently labelled animal tubulin for incorporation into microtubules. From a recent study of Tradescantia stamen hair cells it appears that actin may have a role in defining the plane of cell division. Unlike microtubules, actin is present in the cell cortex and delimits the division site throughout mitosis. Herein, I shall describe actin, its arrangement and putative role in cell plate placement, in another material, living cells of Tradescantia leaf epidermis.The epidermis is peeled from the abaxial surface of young leaves usually without disruption to cytoplasmic streaming or cell division. The peel is stuck to the base of a well slide using 0.1% polyethylenimine and bathed in a solution of 1% mannitol +/− 1 mM probenecid.


2001 ◽  
Vol 114 (23) ◽  
pp. 4319-4328
Author(s):  
Sherryl R. Bisgrove ◽  
Darryl L. Kropf

The first cell division in zygotes of the fucoid brown alga Pelvetia compressa is asymmetric and we are interested in the mechanism controlling the alignment of this division. Since the division plane bisects the mitotic apparatus, we investigated the timing and mechanism of spindle alignments. Centrosomes, which give rise to spindle poles, aligned with the growth axis in two phases – a premetaphase rotation of the nucleus and centrosomes followed by a postmetaphase alignment that coincided with the separation of the mitotic spindle poles during anaphase and telophase. The roles of the cytoskeleton and cell cortex in the two phases of alignment were analyzed by treatment with pharmacological agents. Treatments that disrupted cytoskeleton or perturbed cortical adhesions inhibited pre-metaphase alignment and we propose that this rotational alignment is effected by microtubules anchored at cortical adhesion sites. Postmetaphase alignment was not affected by any of the treatments tested, and may be dependent on asymmetric cell morphology.


Author(s):  
S. Suresh ◽  
C. T. Lim ◽  
M. Dao

The chemical and biological functions of living cells are known to be influenced strongly by mechanical forces and deformation, and the ability of cells to detect and support forces, in turn, is also affected by chemical and biological factors. Furthermore, the progression of a number of inherited and infectious diseases have also been identified to have a strong correlation with the mechanical deformation characteristics of biological cells. Consequently, the deformation characteristics of whole cells and cell membranes have long been investigated using a variety of experimental methods, such as the micropipette aspiration technique, and by computational modeling (see, for example, refs. [1, 2]). Recent advances in experimental techniques capable of probing mechanical forces and displacements to a resolution of picoNewton and nanometer, respectively, have facilitated use of mechanical test methods for living cells whereby precise measurements of response under different stress states could be investigated.


2021 ◽  
Vol 22 (19) ◽  
pp. 10267
Author(s):  
Yiqing Zhang ◽  
Heyang Wei ◽  
Wenyu Wen

Asymmetric cell division (ACD) of neural stem cells and progenitors not only renews the stem cell population but also ensures the normal development of the nervous system, producing various types of neurons with different shapes and functions in the brain. One major mechanism to achieve ACD is the asymmetric localization and uneven segregation of intracellular proteins and organelles into sibling cells. Recent studies have demonstrated that liquid-liquid phase separation (LLPS) provides a potential mechanism for the formation of membrane-less biomolecular condensates that are asymmetrically distributed on limited membrane regions. Moreover, mechanical forces have emerged as pivotal regulators of asymmetric neural stem cell division by generating sibling cell size asymmetry. In this review, we will summarize recent discoveries of ACD mechanisms driven by LLPS and mechanical forces.


2018 ◽  
Vol 114 (3) ◽  
pp. 666a
Author(s):  
Elijah Shelton ◽  
Adam Lucio ◽  
Hannah Gustafson ◽  
Alessandro Mongera ◽  
Friedhelm Serwane ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Sofia Duarte ◽  
Álvaro Viedma-Poyatos ◽  
Elena Navarro-Carrasco ◽  
Alma E. Martínez ◽  
María A. Pajares ◽  
...  

Abstract The vimentin network displays remarkable plasticity to support basic cellular functions and reorganizes during cell division. Here, we show that in several cell types vimentin filaments redistribute to the cell cortex during mitosis, forming a robust framework interwoven with cortical actin and affecting its organization. Importantly, the intrinsically disordered tail domain of vimentin is essential for this redistribution, which allows normal mitotic progression. A tailless vimentin mutant forms curly bundles, which remain entangled with dividing chromosomes leading to mitotic catastrophes or asymmetric partitions. Serial deletions of vimentin tail domain gradually impair cortical association and mitosis progression. Disruption of f-actin, but not of microtubules, causes vimentin bundling near the chromosomes. Pathophysiological stimuli, including HIV-protease and lipoxidation, induce similar alterations. Interestingly, full filament formation is dispensable for cortical association, which also occurs in vimentin particles. These results unveil implications of vimentin dynamics in cell division through its interplay with the actin cortex.


2010 ◽  
Vol 30 (14) ◽  
pp. 3519-3530 ◽  
Author(s):  
Geoffrey E. Woodard ◽  
Ning-Na Huang ◽  
Hyeseon Cho ◽  
Toru Miki ◽  
Gregory G. Tall ◽  
...  

ABSTRACT In model organisms, resistance to inhibitors of cholinesterase 8 (Ric-8), a G protein α (Gα) subunit guanine nucleotide exchange factor (GEF), functions to orient mitotic spindles during asymmetric cell divisions; however, whether Ric-8A has any role in mammalian cell division is unknown. We show here that Ric-8A and Gαi function to orient the metaphase mitotic spindle of mammalian adherent cells. During mitosis, Ric-8A localized at the cell cortex, spindle poles, centromeres, central spindle, and midbody. Pertussis toxin proved to be a useful tool in these studies since it blocked the binding of Ric-8A to Gαi, thus preventing its GEF activity for Gαi. Linking Ric-8A signaling to mammalian cell division, treatment of cells with pertussis toxin, reduction of Ric-8A expression, or decreased Gαi expression similarly affected metaphase cells. Each treatment impaired the localization of LGN (GSPM2), NuMA (microtubule binding nuclear mitotic apparatus protein), and dynein at the metaphase cell cortex and disturbed integrin-dependent mitotic spindle orientation. Live cell imaging of HeLa cells expressing green fluorescent protein-tubulin also revealed that reduced Ric-8A expression prolonged mitosis, caused occasional mitotic arrest, and decreased mitotic spindle movements. These data indicate that Ric-8A signaling leads to assembly of a cortical signaling complex that functions to orient the mitotic spindle.


2018 ◽  
Vol 29 (4) ◽  
pp. 419-434 ◽  
Author(s):  
Namal Abeysundara ◽  
Andrew J. Simmonds ◽  
Sarah C. Hughes

An intact actomyosin network is essential for anchoring polarity proteins to the cell cortex and maintaining cell size asymmetry during asymmetric cell division of Drosophila neuroblasts (NBs). However, the mechanisms that control changes in actomyosin dynamics during asymmetric cell division remain unclear. We find that the actin-binding protein, Moesin, is essential for NB proliferation and mitotic progression in the developing brain. During metaphase, phosphorylated Moesin (p-Moesin) is enriched at the apical cortex, and loss of Moesin leads to defects in apical polarity maintenance and cortical stability. This asymmetric distribution of p-Moesin is determined by components of the apical polarity complex and Slik kinase. During later stages of mitosis, p-Moesin localization shifts more basally, contributing to asymmetric cortical extension and myosin basal furrow positioning. Our findings reveal Moesin as a novel apical polarity protein that drives cortical remodeling of dividing NBs, which is essential for polarity maintenance and initial establishment of cell size asymmetry.


The reasons that have led to a search for DNA in the basal body of Tetrahymena pyriformis are twofold: the well-known property of proliferation of this organelle and the possibility that basal body DNA might be involved in its morphogenesis. After a brief review of earlier work the methods employed in this paper are described. To ensure large numbers of cells in a particular state of development organisms were grown in synchronized culture. Animals required for autoradiographic studies were appropriately treated with tritiated thymidine. All investigations were made on the cell cortex or 'ghost’ in order to avoid confusion from cell contents. In addition to autoradiography of ghosts, tests were made with acridine orange in the fluorescence microscope. It is concluded from fluorescence tests that basal bodies of T. pyriformis strain S contain DNA . This DNA is not detectable for the first 2h of the temperature-shock cycle, but is detect­able thereafter until cell division. The presence of DNA is confirmed by the autoradiography experiments. The amount of DNA per basal body is estimated very roughly in order of magnitude as 2 × 10 -16 g. The origin of basal body DNA is discussed and the possibilities and consequences of the existence of DNA in the homologous centriole are examined in terms of the mitotic cycle, the amoeba-flagellate transformation in Naegleria , and artificial parthenogenesis. The paper concludes with a brief discussion of the genetic implications of basal body DNA .


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Thanh Thi Kim Vuong-Brender ◽  
Martine Ben Amar ◽  
Julien Pontabry ◽  
Michel Labouesse

The morphogenesis of tissues, like the deformation of an object, results from the interplay between their material properties and the mechanical forces exerted on them. The importance of mechanical forces in influencing cell behaviour is widely recognized, whereas the importance of tissue material properties, in particular stiffness, has received much less attention. Using Caenorhabditis elegans as a model, we examine how both aspects contribute to embryonic elongation. Measuring the opening shape of the epidermal actin cortex after laser nano-ablation, we assess the spatiotemporal changes of actomyosin-dependent force and stiffness along the antero-posterior and dorso-ventral axis. Experimental data and analytical modelling show that myosin-II-dependent force anisotropy within the lateral epidermis, and stiffness anisotropy within the fiber-reinforced dorso-ventral epidermis are critical in driving embryonic elongation. Together, our results establish a quantitative link between cortical tension, material properties and morphogenesis of an entire embryo.


Sign in / Sign up

Export Citation Format

Share Document