scholarly journals Sporulation is dispensable for the vegetable-associated life cycle of the human pathogen Bacillus cereus

2021 ◽  
Author(s):  
María Luisa Antequera-Gómez ◽  
Luis Díaz-Martínez ◽  
Juan Antonio Guadix ◽  
Ana María Sánchez-Tévar ◽  
Sara Sopeña-Torres ◽  
...  

AbstractBacillus cereus is a common food-borne pathogen that is responsible for important outbreaks of food poisoning in humans. Diseases caused by B. cereus usually exhibit two major symptoms, emetic or diarrheic, depending on the toxins produced. It is assumed that after the ingestion of contaminated vegetables or processed food, spores of enterotoxigenic B. cereus reach the intestine, where they germinate and produce the enterotoxins that are responsible for food poisoning. In our study, we observed that sporulation is required for the survival of B. cereus in leaves but is dispensable in ready-to-eat vegetables, such as endives. We demonstrate that vegetative cells of B. cereus that are originally impaired in sporulation but not biofilm formation are able to reach the intestine and cause severe disorders in a murine model. We propose that loss of part of the sporulation programme and reinforcement of structural factors related to adhesion, biofilm formation and pathogenic interaction with the host are adaptive traits of B. cereus with a life cycle primarily related to human hosts. Furthermore, our findings emphasise that the number of food poisoning cases associated with B. cereus is underestimated and suggest the need to revise the detection protocols, which are based primarily on spores and toxins.

Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1899
Author(s):  
Angela Michela Immacolata Montone ◽  
Federico Capuano ◽  
Andrea Mancusi ◽  
Orlandina Di Maro ◽  
Maria Francesca Peruzy ◽  
...  

Bacillus cereus is a spoilage bacterium and is recognized as an agent of food poisoning. Two food-borne illnesses are caused by B. cereus: a diarrheal disease, associated with cytotoxin K, hemolysin BL, non-hemolytic enterotoxin and enterotoxin FM, and an emetic syndrome, associated with the cereulide toxin. Owing to the heat resistance of B. cereus and its ability to grow in milk, this organism should be considered potentially hazardous in dairy products. The present study assessed the risk of B. cereus poisoning due to the consumption of water buffalo mozzarella cheese. A total of 340 samples were analyzed to determine B. cereus counts (ISO 7932:2005); isolates underwent molecular characterization to detect the presence of genes encoding toxins. Eighty-nine (26.1%) samples harbored B. cereus strains, with values ranging from 2.2 × 102 to 2.6 × 106 CFU/g. Isolates showed eight different molecular profiles, and some displayed virulence characteristics. Bacterial counts and the toxin profiles of isolates were evaluated both separately and jointly to assess the risk of enteritis due to B. cereus following the consumption of buffalo mozzarella cheese. In conclusion, the results of the present study showed that the risk of poisoning by B. cereus following the consumption of this cheese was moderate.


Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 672
Author(s):  
Markus Kranzler ◽  
Elrike Frenzel ◽  
Veronika Walser ◽  
Thomas F. Hofmann ◽  
Timo D. Stark ◽  
...  

Due to its food-poisoning potential, Bacillus cereus has attracted the attention of the food industry. The cereulide-toxin-producing subgroup is of particular concern, as cereulide toxin is implicated in broadscale food-borne outbreaks and occasionally causes fatalities. The health risks associated with long-term cereulide exposure at low doses remain largely unexplored. Natural substances, such as plant-based secondary metabolites, are widely known for their effective antibacterial potential, which makes them promising as ingredients in food and also as a surrogate for antibiotics. In this work, we tested a range of structurally related phytochemicals, including benzene derivatives, monoterpenes, hydroxycinnamic acid derivatives and vitamins, for their inhibitory effects on the growth of B. cereus and the production of cereulide toxin. For this purpose, we developed a high-throughput, small-scale method which allowed us to analyze B. cereus survival and cereulide production simultaneously in one workflow by coupling an AlamarBlue-based viability assay with ultraperformance liquid chromatography–mass spectrometry (UPLC-MS/MS). This combinatory method allowed us to identify not only phytochemicals with high antibacterial potential, but also ones specifically eradicating cereulide biosynthesis already at very low concentrations, such as gingerol and curcumin.


1972 ◽  
Vol 35 (4) ◽  
pp. 213-227 ◽  
Author(s):  
J. M. Goepfert ◽  
W. M. Spira ◽  
H. U. Kim

This paper is devoted to a review of information pertinent to the role of Bacillus cereus as a food-borne pathogen. Primary emphasis is on the properties of B. cereus and published accounts of its involvement in animal and human disease. Methods for isolation, identification, and enumeration are discussed. Research needs pertaining to (a) recognition of the potential public health hazard and (b) further investigation of the food poisoning syndrome are presented.


Author(s):  
María Luisa Antequera‐Gómez ◽  
Luis Díaz‐Martínez ◽  
Juan Antonio Guadix ◽  
Ana María Sánchez‐Tévar ◽  
Sara Sopeña‐Torres ◽  
...  

2007 ◽  
Vol 73 (6) ◽  
pp. 1892-1898 ◽  
Author(s):  
Martina Fricker ◽  
Ute Messelhäußer ◽  
Ulrich Busch ◽  
Siegfried Scherer ◽  
Monika Ehling-Schulz

ABSTRACT Cereulide-producing Bacillus cereus can cause an emetic type of food-borne disease that mimics the symptoms provoked by Staphylococcus aureus. Based on the recently discovered genetic background for cereulide formation, a novel 5′ nuclease (TaqMan) real-time PCR assay was developed to provide a rapid and sensitive method for the specific detection of emetic B. cereus in food. The TaqMan assay includes an internal amplification control and primers and a probe designed to target a highly specific part of the cereulide synthetase genes. Additionally, a specific SYBR green I assay was developed and extended to create a duplex SYBR green I assay for the one-step identification and discrimination of the two emesis-causing food pathogens B. cereus and S. aureus. The inclusivity and exclusivity of the assay were assessed using a panel of 100 strains, including 23 emetic B. cereus and 14 S. aureus strains. Different methods for DNA isolation from artificially contaminated foods were evaluated, and established real-time assays were used to analyze two recent emetic food poisonings in southern Germany. One of the food-borne outbreaks included 17 children visiting a day care center who vomited after consuming a reheated rice dish, collapsed, and were hospitalized; the other case concerned a single food-poisoning incident occurring after consumption of cauliflower. Within 2 h, the etiological agent of these food poisonings was identified as emetic B. cereus by using the real-time PCR assay.


Microbiology ◽  
2010 ◽  
Vol 156 (4) ◽  
pp. 1009-1018 ◽  
Author(s):  
A. Houry ◽  
R. Briandet ◽  
S. Aymerich ◽  
M. Gohar

Bacillus cereus is a food-borne pathogen and a frequent contaminant of food production plants. The persistence of this pathogen in various environments results from the formation of spores and of biofilms. To investigate the role of the B. cereus flagellar apparatus in biofilm formation, we constructed a non-flagellated mutant and a flagellated but non-motile mutant. Unexpectedly, we found that the presence of flagella decreased the adhesion of the bacterium to glass surfaces. We hypothesize that this decrease is a consequence of the flagella hindering a direct interaction between the bacterial cell wall and the surface. In contrast, in specific conditions, motility promotes biofilm formation. Our results suggest that motility could influence biofilm formation by three mechanisms. Motility is necessary for the bacteria to reach surfaces suitable for biofilm formation. In static conditions, reaching the air–liquid interface, where the biofilm forms, is a strong requirement, whereas in flow cells bacteria can have access to the bottom glass slide by sedimentation. Therefore, motility is important for biofilm formation in glass tubes and in microtitre plates, but not in flow cells. Motility also promotes recruitment of planktonic cells within the biofilm by allowing motile bacteria to invade the whole biofilm. Finally, motility is involved in the spreading of the biofilm on glass surfaces.


Microbiology ◽  
2004 ◽  
Vol 150 (8) ◽  
pp. 2699-2705 ◽  
Author(s):  
Julien Brillard ◽  
Didier Lereclus

The cytotoxin CytK produced by Bacillus cereus is believed to be involved in food-borne diseases. The transcriptional activity of the cytK promoter region in a food-poisoning strain was studied using a reporter gene and compared with that in the reference B. cereus strain ATCC 14579. In the food-poisoning strain, cytK is more strongly transcribed, possibly explaining the pathogenicity. The global regulator PlcR in B. cereus controls several putative virulence factors. It was found that PlcR regulates cytK in this clinical strain despite a mismatch in the PlcR recognition site, as currently defined. This suggests that the PlcR box consensus should be reconsidered and that the PlcR regulon might be larger than suspected. It is also shown that the high level of cytK transcription is not caused by a modification in the PlcR recognition site.


2002 ◽  
Vol 40 (8) ◽  
pp. 3053-3056 ◽  
Author(s):  
M.-H. Guinebretiere ◽  
V. Broussolle ◽  
C. Nguyen-The

Author(s):  
Fatima N. Aziz ◽  
Laith Abdul Hassan Mohammed-Jawad

Food poisoning due to the bacteria is a big global problem in economically and human's health. This problem refers to an illness which is due to infection or the toxin exists in nature and the food that use. Milk is considered a nutritious food because it contains proteins and vitamins. The aim of this study is to detect and phylogeny characterization of staphylococcal enterotoxin B gene (Seb). A total of 200 milk and cheese samples were screened. One hundred ten isolates of Staphylococcus aureus pre-confirmed using selective and differential media with biochemical tests. Genomic DNA was extracted from the isolates and the SEB gene detects using conventional PCR with specific primers. Three staphylococcus aureus isolates were found to be positive for Seb gene using PCR and confirmed by sequencing. Sequence homology showed variety range of identity starting from (100% to 38%). Phylogenetic tree analyses show that samples (6 and 5) are correlated with S. epidermidis. This study discovered that isolates (A6-RLQ and A5-RLQ) are significantly clustered in a group with non- human pathogen Staphylococcus agnetis.


2018 ◽  
Vol 7 (2) ◽  
pp. 131-136
Author(s):  
Nasir Ahmad

Background: On May 4th, 2016, at 12:30 district surveillance officer of Magelang Health Department received reports from Public Health Center of Bandongan about 21 students of SDN 1 Trasan who suffered from the same food-poisoning symptoms. Objective: Investigation was carried out to identify the source, how it spread and how to control it. Methods: This study used descriptive analytic and mapping the cases distribution location. The case was people experiencing symptoms of dizziness or abdominal pain or nausea or vomiting. Data analysis was done by using bivariate analysis. Data collection were done through interviews, observations and laboratory tests on the food samples. Results: The case was 50 students (from 1-6 grade students). The perceived symptoms were dizziness (77%), nausea (42%), abdominal pain (40%) and vomiting (8%). Attack rate found ranged from 14.3% to 60% with the highest Attack rate found on class three (60%). The incubation period of 15-240 minutes (mean 72.3 minutes). Calamari like positive Bacillus cereus and Rhodamine-B 10 mg/kg. Conclusion: The outbreak of food poisoning because calamari like contaminated Bacillus cereus. We suggested the school committee to provide the socialization of harmful food for the students. The teachers should restrict the permission for the food vendor to sell at school.   Keywords: Bacillus cereus, , Food Poisoning, Outbreak, Rhodamine B, School Food


Sign in / Sign up

Export Citation Format

Share Document