scholarly journals Immune response to SARS-CoV-2 in the nasal mucosa in children and adults

Author(s):  
Clarissa M Koch ◽  
Andrew D Prigge ◽  
Kishore R Anekalla ◽  
Avani Shukla ◽  
Hanh Chi Do-Umehara ◽  
...  

AbstractRationaleDespite similar viral load and infectivity rates between children and adults infected with SARS-CoV-2, children rarely develop severe illness. Differences in the host response to the virus at the primary infection site are among the proposed mechanisms.ObjectivesTo investigate the host response to SARS-CoV-2, respiratory syncytial virus (RSV), and influenza virus (IV) in the nasal mucosa in children and adults.MethodsClinical outcomes and gene expression in the nasal mucosa were analyzed in 36 children hospitalized with SARS-CoV-2 infection, 24 children with RSV infection, 9 children with IV infection, 16 adults with mild to moderate SARS-CoV-2 infection, and 7 healthy pediatric and 13 healthy adult controls.ResultsIn both children and adults, infection with SARS-CoV-2 leads to an interferon response in the nasal mucosa. The magnitude of the interferon response correlated with the abundance of viral reads and was comparable between symptomatic children and adults infected with SARS-CoV-2 and symptomatic children infected with RSV and IV. Cell type deconvolution identified an increased abundance of immune cells in the samples from children and adults with a viral infection. Expression of ACE2 and TMPRSS2 – key entry factors for SARS-CoV-2 – did not correlate with age or presence or absence of viral infection.ConclusionsOur findings support the hypothesis that differences in the immune response to SARS-CoV-2 determine disease severity, independent of viral load and interferon response at the primary infection primary site.

2020 ◽  
Vol 4 (1) ◽  
pp. 020-027
Author(s):  
Nikhra Vinod

The global virome: The viruses have a global distribution, phylogenetic diversity and host specificity. They are obligate intracellular parasites with single- or double-stranded DNA or RNA genomes, and afflict bacteria, plants, animals and human population. The viral infection begins when surface proteins bind to receptor proteins on the host cell surface, followed by internalisation, replication and lysis. Further, trans-species interactions of viruses with bacteria, small eukaryotes and host are associated with various zoonotic viral diseases and disease progression. Virome interface and transmission: The cross-species transmission from their natural reservoir, usually mammalian or avian, hosts to infect human-being is a rare probability, but occurs leading to the zoonotic human viral infection. The factors like increased human settlements and encroachments, expanded travel and trade networks, altered wildlife and livestock practices, modernised and mass-farming practices, compromised ecosystems and habitat destruction, and global climate change have impact on the interactions between virome and its hosts and other species and act as drivers of trans-species viral spill-over and human transmission. Zoonotic viral diseases and epidemics: The zoonotic viruses have caused various deadly pandemics in human history. They can be further characterized as either newly emerging or re-emerging infectious diseases, caused by pathogens that historically have infected the same host species, but continue to appear in new locations or in drug-resistant forms, or reappear after apparent control or elimination. The prevalence of zoonoses underlines importance of the animal–human–ecosystem interface in disease transmission. The present COVID-19 infection has certain distinct features which suppress the host immune response and promote the disease potential. Treatment for epidemics like covid-19: It appears that certain nutraceuticals may provide relief in clinical symptoms to patients infected with encapsulated RNA viruses such as influenza and coronavirus. These nutraceuticals appear to reduce the inflammation in the lungs and help to boost type 1 interferon response to these viral infections. The human intestinal microbiota acting in tandem with the host’s defence and immune system, is vital for homeostasis and preservation of health. The integrity and balanced activity of the gut microbes is responsible for the protection from disease states including viral infections. Certain probiotics may help in improving the sensitivity and effectivity of immune system against viral infections. Currently, antiviral therapy is available only for a limited number of zoonotic viral infections. Because viruses are intracellular parasites, antiviral drugs are not able to deactivate or destroy the virus but can reduce the viral load by inhibiting replication and facilitating the host’s innate immune mechanisms to neutralize the virus. Conclusion: Lessons from recent viral epidemics - Considering that certain nutraceuticals have demonstrated antiviral effects in both clinical and animal studies, further studies are required to establish their therapeutic efficacy. The components of nutraceuticals such as luteolin, apigenin, quercetin and chlorogenic acid may be useful for developing a combo-therapy. The use of probiotics to enhance immunity and immune response against viral infections is a novel possibility. The available antiviral therapy is inefficient in deactivating or destroying the infecting viruses, may help in reducing the viral load by inhibiting replication. The novel efficient antiviral agents are being explored.


Author(s):  
Hong Zheng ◽  
Aditya M Rao ◽  
Denis Dermadi ◽  
Jiaying Toh ◽  
Lara Murphy Jones ◽  
...  

AbstractSARS-CoV-2 pandemic, the fourth pandemic of the decade, has underscored gaps in global pandemic preparedness and the need for generalizable tests to avert overwhelming healthcare systems worldwide, irrespective of a virus. We integrated 4,780 blood transcriptome profiles from patients infected with one of 16 viruses across 34 independent cohorts from 18 countries, and 71 scRNA-seq profiles of 264,224 immune cells across three independent cohorts. We found a myeloid cell-dominated conserved host response associated with severity. It showed increased hematopoiesis, myelopoiesis, and myeloid-derived suppressor cells with increased severity. We identified four gene modules that delineate distinct trajectories associated with mild and severe outcomes, and show the interferon response was decoupled from protective host response during severe viral infection. These modules distinguished non-severe from severe viral infection with clinically useful accuracy. Together, our findings provide insights into immune response dynamics during viral infection, and identify factors that may influence patient outcomes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Julie M. Steinbrink ◽  
Rachel A. Myers ◽  
Kaiyuan Hua ◽  
Melissa D. Johnson ◽  
Jessica L. Seidelman ◽  
...  

Abstract Background Candidemia is one of the most common nosocomial bloodstream infections in the United States, causing significant morbidity and mortality in hospitalized patients, but the breadth of the host response to Candida infections in human patients remains poorly defined. Methods In order to better define the host response to Candida infection at the transcriptional level, we performed RNA sequencing on serial peripheral blood samples from 48 hospitalized patients with blood cultures positive for Candida species and compared them to patients with other acute viral, bacterial, and non-infectious illnesses. Regularized multinomial regression was utilized to develop pathogen class-specific gene expression classifiers. Results Candidemia triggers a unique, robust, and conserved transcriptomic response in human hosts with 1641 genes differentially upregulated compared to healthy controls. Many of these genes corresponded to components of the immune response to fungal infection, heavily weighted toward neutrophil activation, heme biosynthesis, and T cell signaling. We developed pathogen class-specific classifiers from these unique signals capable of identifying and differentiating candidemia, viral, or bacterial infection across a variety of hosts with a high degree of accuracy (auROC 0.98 for candidemia, 0.99 for viral and bacterial infection). This classifier was validated on two separate human cohorts (auROC 0.88 for viral infection and 0.87 for bacterial infection in one cohort; auROC 0.97 in another cohort) and an in vitro model (auROC 0.94 for fungal infection, 0.96 for bacterial, and 0.90 for viral infection). Conclusions Transcriptional analysis of circulating leukocytes in patients with acute Candida infections defines novel aspects of the breadth of the human immune response during candidemia and suggests promising diagnostic approaches for simultaneously differentiating multiple types of clinical illnesses in at-risk, acutely ill patients.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ma. Del Rocío Baños-Lara ◽  
Boyang Piao ◽  
Antonieta Guerrero-Plata

Mucins (MUC) constitute an important component of the inflammatory and innate immune response. However, the expression of these molecules by respiratory viral infections is still largely unknown. Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) are two close-related paramyxoviruses that can cause severe low respiratory tract disease in infants and young children worldwide. Currently, there is not vaccine available for neither virus. In this work, we explored the differential expression of MUC by RSV and hMPV in human epithelial cells. Our data indicate that the MUC expression by RSV and hMPV differs significantly, as we observed a stronger induction of MUC8, MUC15, MUC20, MUC21, and MUC22 by RSV infection while the expression of MUC1, MUC2, and MUC5B was dominated by the infection with hMPV. These results may contribute to the different immune response induced by these two respiratory viruses.


2009 ◽  
Vol 16 (6) ◽  
pp. 816-823 ◽  
Author(s):  
Carolina Scagnolari ◽  
Fabio Midulla ◽  
Alessandra Pierangeli ◽  
Corrado Moretti ◽  
Enea Bonci ◽  
...  

ABSTRACT Given the critical role of pattern recognition receptors (PRRs) in acid nucleic recognition in the initiation of innate immunity and the orchestration of adaptive immunity, the aim of this study was to determine whether any heterogeneity of PRR expression in the airway tracts of infants with respiratory syncytial virus (RSV) infection might explain the broad clinical spectrum of RSV-associated bronchiolitis in infants. For this purpose, the levels of melanoma differentiation-associated protein-5 (MDA-5), retinoic acid inducible gene-1 (RIG-1), and Toll-like receptor 3 (TLR-3), TLR-7, TLR-8, and TLR-9 mRNAs were evaluated, using TaqMan quantitative reverse transcription-PCR, in cells from nasopharyngeal washes collected from 157 infants suffering from acute bronchiolitis whether or not they were associated with respiratory viruses. High interindividual variability was observed in both virus-positive and -negative infants; however, the relative gene expression levels of MDA-5, RIG-1, TLR-7, and TLR-8 were significantly higher in the virus-infected group, whereas the expression levels of TLR-3 and TLR-9 were not significantly different. The differences in the gene expression of MDA-5, RIG-1, TLR-7, and TLR-8 were more evident in infants with RSV infection than in those with bocavirus or rhinovirus infection. In RSV-infected infants, PRR-mRNA levels also were analyzed in relation to interferon protein levels, viral load, clinical severity, days of hospitalization, age, and body weight. A significant positive correlation was observed only between RSV viral load and RIG-1 mRNA levels. These findings provide the first direct evidence that, in infants with respiratory virus-associated bronchiolitis, especially RSV, there are substantial changes in PRR gene expression; this likely is an important determinant of the clinical outcome of bronchiolitis.


2015 ◽  
Vol 90 (1) ◽  
pp. 2-4 ◽  
Author(s):  
Dahui You ◽  
Jordy Saravia ◽  
David Siefker ◽  
Bishwas Shrestha ◽  
Stephania A. Cormier

The infant immune response to respiratory syncytial virus (RSV) remains incompletely understood. Here we review the use of a neonatal mouse model of RSV infection to mimic severe infection in human infants. We describe numerous age-specific responses, organized by cell type, observed in RSV-infected neonatal mice and draw comparisons (when possible) to human infants.


PEDIATRICS ◽  
1995 ◽  
Vol 96 (2) ◽  
pp. 391-391
Author(s):  
Leon S. Greos

Alveolar macrophages are infected by RSV in vivo and coexpress potent immunomodulatory molecules that potentially regulate local immune response or lung injury caused by RSV infection.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S305-S306
Author(s):  
Li-Juan Jiang ◽  
Lisha Xu ◽  
Meng Huang ◽  
Shucha Zhang ◽  
Yang Li ◽  
...  

Abstract Background Respiratory syncytial virus (RSV) infection presents a significant health challenge in young children, elderly and immunocompromised patients. To date, there are no effective treatments available. EDP-938 was designed to meet this unmet medical need and is currently in Phase 2 clinical trials. Herein we report its preclinical pharmacokinetic (PK) and pharmacodynamic (PD) properties. Methods The pharmacokinetics of EDP-938 following single intravenous and oral doses were determined in mice, rats, dogs, and monkeys. In vitro cellular permeability and metabolic stability were assayed using Caco-2 cells and human liver microsomes, respectively. In vivo pharmacodynamic efficacy of EDP-938 was conducted in the African green monkey model, in which animals experimentally challenged with RSV were orally dosed twice daily with 100 mg/kg EDP-938 for 6 days starting 24 hours prior to infection. Results EDP-938 was well absorbed in the preclinical species with oral bioavailability values ranging from 27.1% in dogs, 35.4% in mice, 35.7% in rats, and 39.5% in monkeys, after a single oral dose when formulated in 0.5% methylcellulose. EDP-938 showed a moderate in vitro permeability of 3.6 x 10–6 cm/sec in Caco-2 cells. Based on the outcome of these absorption studies, EDP-938 was projected to have good oral absorption in humans. EDP-938 had low intrinsic clearance of 5 mL/minute/mg in human liver microsomes. Moreover, EDP-938 demonstrated potent antiviral efficacy in an African green monkey model of RSV infection. In untreated monkeys the RSV RNA viral load in the bronchoalveolar lavage fluid peaked at 106 copies/mL on day 5 post-infection, by comparison in animals treated with EDP-938 the viral load was below the limit of detection by day 3 post-infection. The PK/PD modeling suggested that plasma trough concentrations ≥10 × EC90 led to >4-log viral load reduction in EDP-938 treated monkeys. Conclusion The favorable preclinical PK and PD properties of EDP-938 support its further clinical development as a novel treatment for RSV infection. Disclosures All authors: No reported disclosures.


2017 ◽  
Vol 30 (2) ◽  
pp. 481-502 ◽  
Author(s):  
Clark D. Russell ◽  
Stefan A. Unger ◽  
Marc Walton ◽  
Jürgen Schwarze

SUMMARY Respiratory syncytial virus (RSV) is an important etiological agent of respiratory infections, particularly in children. Much information regarding the immune response to RSV comes from animal models and in vitro studies. Here, we provide a comprehensive description of the human immune response to RSV infection, based on a systematic literature review of research on infected humans. There is an initial strong neutrophil response to RSV infection in humans, which is positively correlated with disease severity and mediated by interleukin-8 (IL-8). Dendritic cells migrate to the lungs as the primary antigen-presenting cell. An initial systemic T-cell lymphopenia is followed by a pulmonary CD8+ T-cell response, mediating viral clearance. Humoral immunity to reinfection is incomplete, but RSV IgG and IgA are protective. B-cell-stimulating factors derived from airway epithelium play a major role in protective antibody generation. Gamma interferon (IFN-γ) has a strongly protective role, and a Th2-biased response may be deleterious. Other cytokines (particularly IL-17A), chemokines (particularly CCL-5 and CCL-3), and local innate immune factors (including cathelicidins and IFN-λ) contribute to pathogenesis. In summary, neutrophilic inflammation is incriminated as a harmful response, whereas CD8+ T cells and IFN-γ have protective roles. These may represent important therapeutic targets to modulate the immunopathogenesis of RSV infection.


2015 ◽  
Vol 59 (8) ◽  
pp. 4889-4900 ◽  
Author(s):  
Robert Jordan ◽  
Matt Shao ◽  
Richard L. Mackman ◽  
Michel Perron ◽  
Tomas Cihlar ◽  
...  

ABSTRACTRespiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in infants. Effective treatment for RSV infection is a significant unmet medical need. While new RSV therapeutics are now in development, there are very few animal models that mimic the pathogenesis of human RSV, making it difficult to evaluate new disease interventions. Experimental infection of Holstein calves with bovine RSV (bRSV) causes a severe respiratory infection that is similar to human RSV infection, providing a relevant model for testing novel therapeutic agents. In this model, viral load is readily detected in nasal secretions by quantitative real-time PCR (qRT-PCR), and cumulative symptom scoring together with histopathology evaluations of infected tissue allow for the assessment of disease severity. The bovine RSV model was used to evaluate the antiviral activity of an RSV fusion inhibitor, GS1, which blocks virus entry by inhibiting the fusion of the viral envelope with the host cell membrane. The efficacy of GS1, a close structural analog of GS-5806 that is being developed to treat RSV infection in humans was evaluated in two randomized, blind, placebo-controlled studies in bRSV-infected calves. Intravenous administration of GS1 at 4 mg/kg of body weight/day for 7 days starting 24 h or 72 h postinoculation provided clear therapeutic benefit by reducing the viral load, disease symptom score, respiration rate, and lung pathology associated with bRSV infection. These data support the use of the bovine RSV model for evaluation of experimental therapeutics for treatment of RSV.


Sign in / Sign up

Export Citation Format

Share Document