scholarly journals Perturbation of BRMS1 interactome reveals pathways that impact cell migration

2021 ◽  
Author(s):  
Rosalyn Zimmermann ◽  
Mihaela E. Sardiu ◽  
Christa A. Manton ◽  
Md. Sayem Miah ◽  
Charles A.S. Banks ◽  
...  

AbstractBreast Cancer Metastasis Suppressor 1 (BRMS1) expression has been associated with longer patient survival in multiple cancer types. Understanding BRMS1 at the protein level will provide insights into both mechanism of action and enhance potential therapeutic development. We previously mapped the C-terminus of BRMS1 as critical for metastasis suppression and hypothesized that critical protein interactions in this region will explain function. These studies indicate that phosphorylation status at S237 regulates BRMS1 interactions related to a variety of biological processes, phenotypes [cell cycle (e.g., CDKN2A), DNA repair (e.g., BRCA1)], and metastasis [(e.g., TCF2 and POLE2)]. Presence of the C-terminal site appears to be critical for BRMS1 directed metastasis suppression, as demonstrated by in vitro migration assays. These assays demonstrated that presence of S237 directly decreased MDA-MB-231 migration. This study furthers our understanding of BRMS1’s molecular role, as it demonstrates that BRMS1 C-terminus is involved in direct protein-protein interactions. Several of the interacting proteins are associated with cancer and metastasis, which may result in metastasis suppression as suggested by in vitro findings.Abstract FigureGraphical AbstractUtilizing BRMS1 mutants to mimic-phosphorylation, this study demonstrates that S237-phosphorylation disrupts BRMS1 protein-protein interactions. The disruption includes both known Sin3/HDAC interactors as well as additionally previously unidentified Sin3-indepedent binding partners (indicated by increased opacity). It is revealed that BRMS1-phosphorylation status also more greatly inhibits cell migration (indicated by +) compared to the unphosphorylated state, suggesting that phosphorylation plays a role in BRMS1 metastatsis suppresion function, potentially though altered protein interactions.

PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259128
Author(s):  
Rosalyn C. Zimmermann ◽  
Mihaela E. Sardiu ◽  
Christa A. Manton ◽  
Md. Sayem Miah ◽  
Charles A. S. Banks ◽  
...  

Breast Cancer Metastasis Suppressor 1 (BRMS1) expression is associated with longer patient survival in multiple cancer types. Understanding BRMS1 functionality will provide insights into both mechanism of action and will enhance potential therapeutic development. In this study, we confirmed that the C-terminus of BRMS1 is critical for metastasis suppression and hypothesized that critical protein interactions in this region would explain its function. Phosphorylation status at S237 regulates BRMS1 protein interactions related to a variety of biological processes, phenotypes [cell cycle (e.g., CDKN2A), DNA repair (e.g., BRCA1)], and metastasis [(e.g., TCF2 and POLE2)]. Presence of S237 also directly decreased MDA-MB-231 breast carcinoma migration in vitro and metastases in vivo. The results add significantly to our understanding of how BRMS1 interactions with Sin3/HDAC complexes regulate metastasis and expand insights into BRMS1’s molecular role, as they demonstrate BRMS1 C-terminus involvement in distinct protein-protein interactions.


2006 ◽  
Vol 26 (23) ◽  
pp. 8683-8696 ◽  
Author(s):  
Yuan Liu ◽  
Philip W. Smith ◽  
David R. Jones

ABSTRACT The antiapoptotic transcription factor NF-κB is constitutively activated in many cancers and is important for cytokine-mediated progression and metastatic movement of tumors. Breast cancer metastasis suppressor 1 (BRMS1) is a metastasis suppressor gene whose mechanisms of action are poorly understood. In this report, we demonstrate that BRMS1 decreases the transactivation potential of RelA/p65 and ameliorates the expression of NF-κB-regulated antiapoptotic gene products. BRMS1 immunoprecipitates with the RelA/p65 subunit of NF-κB with protein-protein interactions occurring at the C terminus region of the rel homology domain but not at its known transactivation domains. Moreover, BRMS1 functions as a corepressor by promoting binding of HDAC1 to RelA/p65, where it deacetylates lysine K310 on RelA/p65, which suppresses RelA/p65 transcriptional activity. Selective small interfering RNA knockdown of BRMS1 confirms that chromatin-bound BRMS1 is required for deacetylation of RelA/p65, while enhancing chromatin occupancy of HDAC1 onto the NF-κB-regulated promoters cIAP2 and Bfl-1/A1. We observed in cells lacking BRMS1 a dramatic increase in cell viability after the loss of attachment from the extracellular matrix. Collectively, these results suggest that BRMS1 suppresses metastasis through its ability to function as a transcriptional corepressor of antiapoptotic genes regulated by NF-κB.


2017 ◽  
Vol 10 ◽  
pp. 117906441771319 ◽  
Author(s):  
John K Cowell ◽  
Yong Teng ◽  
N George Bendzunas ◽  
Roxan Ara ◽  
Ali S Arbab ◽  
...  

The WASF3 gene facilitates the metastatic phenotype, and its inactivation leads to suppression of invasion and metastasis regardless of the genetic background of the cancer cell. This reliance on WASF3 to facilitate metastasis suggests that targeting its function could serve as an effective strategy to suppress metastasis. WASF3 stability and function are regulated by the WASF Regulatory Complex (WRC) of proteins, particularly CYFIP1 and NCKAP1. Knockdown of these proteins in vitro leads to disruption of the WRC and suppression of invasion. We have used mouse xenograft models of breast cancer metastasis to assess whether targeting the WRC complex suppresses metastasis in vivo. Stapled peptides targeting the WASF3-CYFIP1 interface (WAHM1) and the CYFIP1-NCKAP1 interface (WANT3) suppress the development of lung and liver metastases. Targeting these critical protein-protein interactions, therefore, could potentially be developed into a therapeutic strategy to control cancer cell invasion and metastasis.


2021 ◽  
Author(s):  
Jerry Xiao ◽  
Joseph R. McGill ◽  
Apsra Nasir ◽  
Alexander Lekan ◽  
Bailey Johnson ◽  
...  

Cancer metastasis is a critical culprit frequently blamed for treatment failure, drug resistance, poor prognosis, and high mortality rate among all human cancers. Laboratory efforts to isolate metastatic cell populations have typically been confined to mouse models, which are time-consuming and expensive. Here, we present a model system based on xenografting zebrafish embryos to select for cells that are predisposed to progress through the early stages of metastasis. This model requires only 3-5 days to achieve distinct intravasation to the zebrafish circulatory system. The metastatic cells are easily tracked in real-time as they migrate, as well as isolated and propagated in vitro. Once expanded, molecular characterization of the serially derived invasive cell populations from the tails of the zebrafish accurately predicts genes, signaling pathways, protein-protein interactions, and differential splicing products that are important for an invasive phenotype. This zebrafish model therefore offers a high-throughput and robust method for identifying gene targets critical for cancer metastasis.


2020 ◽  
Author(s):  
Helen Schmidt ◽  
Andrea Putnam ◽  
Dominique Rasoloson ◽  
Geraldine Seydoux

ABSTRACTGerm granules are RNA-protein condensates in germ cells. The mechanisms that drive germ granule assembly are not fully understood. MEG-3 is an intrinsically-disordered protein required for germ (P) granule assembly in C. elegans. MEG-3 forms gel-like condensates on liquid condensates assembled by PGL proteins. MEG-3 is related to the GCNA family and contains an N-terminal disordered region (IDR) and a predicted ordered C-terminus featuring an HMG-like motif (HMGL). Using in vitro and in vivo experiments, we find the MEG-3 C-terminus is necessary and sufficient to build MEG-3/PGL co-condensates independent of RNA. The HMGL domain is required for high affinity MEG-3/PGL binding in vitro and for assembly of MEG-3/PGL co-condensates in vivo. The MEG-3 IDR binds RNA in vitro and is required but not sufficient to recruit RNA to P granules. Our findings suggest that P granule assembly depends in part on protein-protein interactions that drive condensation independent of RNA.


2021 ◽  
Author(s):  
Oleta T Johnson ◽  
Cory M Nadel ◽  
Emma C Carroll ◽  
Taylor Arhar ◽  
Jason E Gestwicki

Chaperones of the heat shock protein 70 (Hsp70) family engage in protein-protein interactions (PPIs) with many co-chaperones. One hotspot for co-chaperone binding is the EEVD motif that is found at the extreme C-terminus of cytoplasmic Hsp70s. This motif is known to bind tetratricopeptide repeat (TPR) domain co-chaperones, such as the E3 ubiquitin ligase CHIP, and Class B J-domain proteins (JDPs), such as DnaJB4. Although complexes between Hsp70-CHIP and Hsp70-DnaJB4 are both important for chaperone functions, the molecular determinants that dictate the competition between these co-chaperones are not clear. Using a collection of EEVD-derived peptides, we find that DnaJB4 binds to the IEEVD motif of Hsp70s, but not the related MEEVD motif of cytoplasmic Hsp90s. Then, we explored which residues are critical for binding to CHIP and DnaJB4, revealing that they rely on some shared features of the IEEVD motif, such as the C-terminal carboxylate. However, they also had unique preferences, especially at the isoleucine position. Finally, we observed a functionally important role for competition between CHIP and DnaJB4 in vitro, as DnaJB4 can limit the ubiquitination activity of the Hsp70-CHIP complex, while CHIP suppresses the chaperone activities of Hsp70-DnaJB4. Together, these results suggest that the EEVD motif has evolved to support diverse PPIs, such that competition between co-chaperones could help guide whether Hsp70-bound proteins are folded or degraded.


1993 ◽  
Vol 13 (2) ◽  
pp. 1069-1077 ◽  
Author(s):  
J Sidorova ◽  
L Breeden

SWI4 and SWI6 play a crucial role in START-specific transcription in Saccharomyces cerevisiae. SWI4 and SWI6 form a specific complex on the SCB (SWI4/6-dependent cell cycle box) sequences which have been found in the promoters of HO and G1 cyclin genes. Overproduction of SWI4 eliminates the SWI6 dependency of HO transcription in vivo and results in a new SWI6-independent, SCB-specific complex in vitro, which is heterogeneous and reacts with SWI4 antibodies. The C terminus of SWI4 is not required for SWI6-independent binding of SWI4 to SCB sequences, but it is necessary and sufficient for association with SWI6. Both SWI4 and SWI6 contain two copies of a 33-amino-acid TPLH repeat, which has been implicated in protein-protein interactions in other proteins. These repeats are not required for the SWI4-SWI6 association. Alanine substitutions in both TPLH repeats of SWI6 reduce its activity but do not affect the stability of the protein or its association with SWI4. However, these mutations reduce the ability of the SWI4/6 complex to bind DNA. Deletion of the lucine zipper motif in SWI6 also allows SWI4/6 complex formation, but it eliminates the DNA-binding ability of the SWI4/6 complex. This indicates that the integrity of two different regions of SWI6 is required for DNA binding by the SWI4/6 complex. From these data, we propose that the sequence-specific DNA-binding domain resides in SWI4 but that SWI6 controls the accessibility of this domain in the SWI4/6 complex.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 795
Author(s):  
Danielle R. Bond ◽  
Richard Kahl ◽  
Joshua S. Brzozowski ◽  
Helen Jankowski ◽  
Crystal Naudin ◽  
...  

Breast cancer is the most commonly diagnosed and the second leading cause of cancer-related mortality among women worldwide. miR-518f-5p has been shown to modulate the expression of the metastasis suppressor CD9 in prostate cancer. However, the role of miR-518f-5p and CD9 in breast cancer is unknown. Therefore, this study aimed to elucidate the role of miR-518f-5p and the mechanisms responsible for decreased CD9 expression in breast cancer, as well as the role of CD9 in de novo tumor formation and metastasis. miR-518f-5p function was assessed using migration, adhesion, and proliferation assays. miR-518f-5p was overexpressed in breast cancer cell lines that displayed significantly lower CD9 expression as well as less endogenous CD9 3′UTR activity, as assessed using qPCR and dual luciferase assays. Transfection of miR-518f-5p significantly decreased CD9 protein expression and increased breast cell migration in vitro. Cd9 deletion in the MMTV/PyMT mouse model impaired tumor growth, but had no effect on tumor initiation or metastasis. Therefore, inhibition of miR-518f-5p may restore CD9 expression and aid in the treatment of breast cancer metastasis.


Sign in / Sign up

Export Citation Format

Share Document