scholarly journals Whole genome 6-methyladenosine sequencing (6-mA-Seq) enables bacterial epigenomics studies

2021 ◽  
Author(s):  
Rachel R. Spurbeck ◽  
Angela T. Minard-Smith ◽  
Lindsay A. Catlin ◽  
Robert W. Murdoch ◽  
Rich M. Chou ◽  
...  

AbstractMethylation sequencing using bisulfite treatment has revolutionized the field of molecular biology for eukaryotic systems, unveiling levels of intricacy in regulation of gene expression in response to different environmental conditions. While bacteria also utilize methylation to regulate gene expression, bisulfite sequencing does not work as well in bacteria as in eukaryotes, because bacteria methylate adenosine instead of cytosine. Therefore, global bacterial methylation patterns cannot be studied using common Illumina sequencers. In this work, we demonstrate 6mA-seq, a method that can be used to identify patterns in bacteria that methylate adenosines at GATC sites. Furthermore, this method was used on Escherichia coli cultured on four different carbon sources to demonstrate different methylation patterns due to carbon utilization. 6mA-seq can increase the speed in which epigenetic research is conducted in bacteria.

2020 ◽  
Vol 295 (26) ◽  
pp. 8736-8745 ◽  
Author(s):  
Akihiko Sakamoto ◽  
Yusuke Terui ◽  
Takeshi Uemura ◽  
Kazuei Igarashi ◽  
Keiko Kashiwagi

Polyamines regulate gene expression in Escherichia coli by translationally stimulating mRNAs encoding global transcription factors. In this study, we focused on histone acetylation, one of the mechanisms of epigenetic regulation of gene expression, to attempt to clarify the role of polyamines in the regulation of gene expression in eukaryotes. We found that activities of histone acetyltransferases in both the nucleus and cytoplasm decreased significantly in polyamine-reduced mouse mammary carcinoma FM3A cells. Although protein levels of histones H3 and H4 did not change in control and polyamine-reduced cells, acetylation of histones H3 and H4 was greatly decreased in the polyamine-reduced cells. Next, we used control and polyamine-reduced cells to identify histone acetyltransferases whose synthesis is stimulated by polyamines. We found that polyamines stimulate the translation of histone acetyltransferases GCN5 and HAT1. Accordingly, GCN5- and HAT1-catalyzed acetylation of specific lysine residues on histones H3 and H4 was stimulated by polyamines. Consistent with these findings, transcription of genes required for cell proliferation was enhanced by polyamines. These results indicate that polyamines regulate gene expression by enhancing the expression of the histone acetyltransferases GCN5 and HAT1 at the level of translation. Mechanistically, polyamines enhanced the interaction of microRNA-7648-5p (miR-7648-5p) with the 5′-UTR of GCN5 mRNA, resulting in stimulation of translation due to the destabilization of the double-stranded RNA (dsRNA) between the 5′-UTR and the ORF of GCN5 mRNA. Because HAT1 mRNA has a short 5′-UTR, polyamines may enhance initiation complex formation directly on this mRNA.


2017 ◽  
Author(s):  
Maxime Wery ◽  
Camille Gautier ◽  
Marc Descrimes ◽  
Mayuko Yoda ◽  
Valérie Migeot ◽  
...  

ABSTRACTAntisense (as)lncRNAs can regulate gene expression but the underlying mechanisms and the different cofactors involved remain unclear. Using Native Elongating Transcript sequencing, here we show that stabilization of antisense Exo2-sensitivite IncRNAs (XUTs) results in the attenuation, at the nascent transcription level, of a subset of highly expressed genes displaying prominent promoter-proximal nucleosome depletion and histone acetylation. Mechanistic investigations on the catalase genectt1revealed that its induction following oxidative stress is impaired in Exo2-deficient cells, correlating with the accumulation of an asXUT. Interestingly, expression of this asXUT was also activated in wild-type cells upon oxidative stress, concomitant toctt1induction, indicating a potential attenuation feedback. This attenuation correlates with asXUT abundance, it is transcriptional, characterized by low RNAPII-ser5 phosphorylation, and it requires an histone deacetylase activity and the conserved Set2 histone methyltransferase. Finally, we identified Dicer as another RNA processing factor acting onctt1induction, but independently of Exo2. We propose that asXUTs could modulate the expression of their paired-sense genes when it exceeds a critical threshold, using a conserved mechanism independent of RNAi.AUTHOR SUMMARYExamples of regulatory antisense (as)lncRNAs acting on gene expression have been reported in multiple model organisms. However, despite their regulatory importance, aslncRNAs have been poorly studied, and the molecular bases for aslncRNAs-mediated regulation remain incomplete. One reason for the lack of global information on aslncRNAs appears to be their low cellular abundance. Indeed, our previous studies in budding and fission yeasts revealed that aslncRNAs are actively degraded by the Xrn1/Exo2-dependent cytoplasmic 5′-3′ RNA decay pathway. Using a combination of single-gene and genome-wide analyses in fission yeast, here we report that the stabilization of a set of Exo2-sensitive aslncRNAs correlates with attenuation of paired-sense genes transcription. Our work provides fundamental insights into the mechanism by which aslncRNAs could regulate gene expression. It also highlights for the first time that the level of sense gene transcription and the presence of specific chromatin features could define the potential of aslncRNA-mediated attenuation, raising the idea that aslncRNAs only attenuate those genes with expression levels above a “regulatory threshold”. This opens novel perspectives regarding what the potential determinants of aslncRNA-dependent regulation, as previous models in budding yeast rather proposed that aslncRNA-mediated repression is restricted to lowly expressed genes.


2010 ◽  
Vol 32 (5) ◽  
pp. 18-20
Author(s):  
Mary G. Goll

Proper regulation of gene expression is essential for the development and survival of every organ ism. Epigenetic modifications provide a way for cells to regulate gene expression and to propagate expression states heritably through cell division. Given the brain's complexity, it is not surprising that epigenetic regulation is essential for both normal development and maintenance of homoeostasis of this organ. New data suggest that the role of epigenetic regulation in the brain may extend much further, influencing both the ways neurons organize their networks in response to new experiences and the resultant behaviours. Such studies highlight the relevance of epigenetic regulation for neu rodevelopmental and neuropsychiatric disease.


2017 ◽  
Vol 8 (5-6) ◽  
pp. 203-212 ◽  
Author(s):  
Sara Morales ◽  
Mariano Monzo ◽  
Alfons Navarro

AbstractMicroRNAs (miRNAs) are single-stranded RNAs of 18–25 nucleotides that regulate gene expression at the post-transcriptional level. They are involved in many physiological and pathological processes, including cell proliferation, apoptosis, development and carcinogenesis. Because of the central role of miRNAs in the regulation of gene expression, their expression needs to be tightly controlled. Here, we summarize the different mechanisms of epigenetic regulation of miRNAs, with a particular focus on DNA methylation and histone modification.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 21
Author(s):  
Y-h Taguchi

Background miRNA regulation of target genes and promoter methylation were known to be the primary mechanisms underlying the epigenetic regulation of gene expression. However, how these two processes cooperatively regulate gene expression has not been extensively studied. Methods Gene expression and promoter methylation profiles of 271 distinct human cell lines were obtained from gene expression omnibus. P-values that describe both miRNA-targeting-specific promoter methylation and miRNA regulation of target genes were computed with the MiRaGE method proposed recently by the author. Results We found that promoter methylation was miRNA-targeting-specific. In other words, changes in promoter methylation were associated with miRNA binding at target genes. It was also found that miRNA-targeting-specific promoter hypomethylation was related to miRNA regulation; the genes with miRNA-targeting-specific promoter hypomethylation were downregulated during cell senescence and upregulated during cellulardierentiation. Promoter hypomethylation was especially enhanced for genes targeted by miR-548 miRNAs, which are non-conserved, and primate-specific miRNAs that are typically expressed at lower levels than the frequently investigated conserved miRNAs. Conclusions It was found that promoter methylation was affected by miRNA targeting. Furthermore, miRNA-targeting-specific promoter hypomethylation was suggested to facilitate gene regulation by miRNAs that are not strongly expressed (e.g., miR-548 miRNAs).


Development ◽  
1999 ◽  
Vol 126 (15) ◽  
pp. 3275-3283 ◽  
Author(s):  
G. Seydoux ◽  
S. Strome

One hundred years after Weismann's seminal observations, the mechanisms that distinguish the germline from the soma still remain poorly understood. This review describes recent studies in Caenorhabditis elegans, which suggest that germ cells utilize unique mechanisms to regulate gene expression. In particular, mechanisms that repress the production of mRNAs appear to be essential to maintain germ cell fate and viability.


1992 ◽  
Vol 66 (1) ◽  
pp. 95-105 ◽  
Author(s):  
A M Colberg-Poley ◽  
L D Santomenna ◽  
P P Harlow ◽  
P A Benfield ◽  
D J Tenney

Sign in / Sign up

Export Citation Format

Share Document