scholarly journals Evolution of gene-rich germline restricted chromosomes in black-winged fungus gnats through introgression (Diptera: Sciaridae)

2021 ◽  
Author(s):  
Christina N. Hodson ◽  
Kamil S. Jaron ◽  
Susan Gerbi ◽  
Laura Ross

AbstractGermline restricted DNA has evolved in diverse animal taxa, and is found in several vertebrate clades, nematodes, and flies. In these lineages, either portions of chromosomes or entire chromosomes are eliminated from somatic cells early in development, restricting portions of the genome to the germline. Little is known about why germline restricted DNA has evolved, especially in flies, in which three diverse families, Chironomidae, Cecidomyiidae, and Sciaridae exhibit germline restricted chromosomes (GRCs). We conducted a genomic analysis of germline restricted chromosomes in the fungus gnat Bradysia (Sciara) coprophila (Diptera: Sciaridae), which carries two large germline restricted “L” chromosomes. We sequenced and assembled the genome of B. coprophila, and used differences in sequence coverage and k-mer frequency between somatic and germ tissues to identify GRC sequence and compare it to the other chromosomes in the genome. We found that the GRCs in B. coprophila are large, gene-rich, and have many genes with paralogs on other chromosomes in the genome. We also found that the GRC genes are extraordinarily divergent from their paralogs, and have sequence similarity to another Dipteran family (Cecidomyiidae) in phylogenetic analyses, suggesting that these chromosomes have arisen in Sciaridae through introgression from a related lineage. These results suggest that the GRCs may have evolved through an ancient hybridization event, raising questions about how this may have occurred, how these chromosomes became restricted to the germline after introgression, and why they were retained over time.

2019 ◽  
Vol 44 (4) ◽  
pp. 930-942
Author(s):  
Geraldine A. Allen ◽  
Luc Brouillet ◽  
John C. Semple ◽  
Heidi J. Guest ◽  
Robert Underhill

Abstract—Doellingeria and Eucephalus form the earliest-diverging clade of the North American Astereae lineage. Phylogenetic analyses of both nuclear and plastid sequence data show that the Doellingeria-Eucephalus clade consists of two main subclades that differ from current circumscriptions of the two genera. Doellingeria is the sister group to E. elegans, and the Doellingeria + E. elegans subclade in turn is sister to the subclade containing all remaining species of Eucephalus. In the plastid phylogeny, the two subclades are deeply divergent, a pattern that is consistent with an ancient hybridization event involving ancestral species of the Doellingeria-Eucephalus clade and an ancestral taxon of a related North American or South American group. Divergence of the two Doellingeria-Eucephalus subclades may have occurred in association with northward migration from South American ancestors. We combine these two genera under the older of the two names, Doellingeria, and propose 12 new combinations (10 species and two varieties) for all species of Eucephalus.


2020 ◽  
Author(s):  
Chendan Wei ◽  
Zhenyi Wang ◽  
Jianyu Wang ◽  
Jia Teng ◽  
Shaoqi Shen ◽  
...  

AbstractExtensive sequence similarity between duplicated gene pairs produced by paleo-polyploidization may result from illegitimate recombination between homologous chromosomes. The genomes of Asian cultivated rice Xian/indica (XI) and Geng/japonica (GJ) have recently been updated, providing new opportunities for investigating on-going gene conversion events. Using comparative genomics and phylogenetic analyses, we evaluated gene conversion rates between duplicated genes produced by polyploidization 100 million years ago (mya) in GJ and XI. At least 5.19%–5.77% of genes duplicated across three genomes were affected by whole-gene conversion after the divergence of GJ and XI at ~0.4 mya, with more (7.77%–9.53%) showing conversion of only gene portions. Independently converted duplicates surviving in genomes of different subspecies often used the same donor genes. On-going gene conversion frequency was higher near chromosome termini, with a single pair of homoeologous chromosomes 11 and 12 in each genome most affected. Notably, on-going gene conversion has maintained similarity between very ancient duplicates, provided opportunities for further gene conversion, and accelerated rice divergence. Chromosome rearrangement after polyploidization may result in gene loss, providing a basis for on-going gene conversion, and may have contributed directly to restricted recombination/conversion between homoeologous regions. Gene conversion affected biological functions associated with multiple genes, such as catalytic activity, implying opportunities for interaction among members of large gene families, such as NBS-LRR disease-resistance genes, resulting in gene conversion. Duplicated genes in rice subspecies generated by grass polyploidization ~100 mya remain affected by gene conversion at high frequency, with important implications for the divergence of rice subspecies.One-sentence summaryOn-going gene conversion between duplicated genes produced by 100 mya polyploidization contributes to rice subspecies divergence, often involving the same donor genes at chromosome termini.


Viruses ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1373
Author(s):  
Sang Guen Kim ◽  
Sung Bin Lee ◽  
Sib Sankar Giri ◽  
Hyoun Joong Kim ◽  
Sang Wha Kim ◽  
...  

Jumbo phages, which have a genome size of more than 200 kb, have recently been reported for the first time. However, limited information is available regarding their characteristics because few jumbo phages have been isolated. Therefore, in this study, we aimed to isolate and characterize other jumbo phages. We performed comparative genomic analysis of three Erwinia phages (pEa_SNUABM_12, pEa_SNUABM_47, and pEa_SNUABM_50), each of which had a genome size of approximately 360 kb (32.5% GC content). These phages were predicted to harbor 546, 540, and 540 open reading frames with 32, 34, and 35 tRNAs, respectively. Almost all of the genes in these phages could not be functionally annotated but showed high sequence similarity with genes encoded in Serratia phage BF, a member of Eneladusvirus. The detailed comparative and phylogenetic analyses presented in this study contribute to our understanding of the diversity and evolution of Erwinia phage and the genus Eneladusvirus.


2020 ◽  
Vol 2 (1) ◽  
pp. 126-130
Author(s):  
Faiz Ul Haq ◽  
◽  
Sidrah Saleem ◽  
Muhammad Imran ◽  
Ayesha Ghazal ◽  
...  

There is a rising global concern about the SARS CoV-2 as a public health threat. Complete genome sequence have been released by the worldwide scientific community for understanding the molecular characteristics and evolutionary origin of this virus. Aim of the current context is to present phylogenetic relationship and genomic variation of 2019-nCoV. Based on availability of genomic information, we constructed a phylogenetic tree including also representatives of other coronaviridae, such as Middle East respiratory syndrome, severe acute respiratory syndrome and Bat coronavirus. The phylogenetic tree analysis suggested that SARS CoV-2 significantly clustered with bat SARS like coronavirus genome, however structural analysis revealed mutation in Spike Glycoprotein and nucleocapsid protein. However our phylogenetic and genomic analysis suggests that bats can be the reservoir for this virus. Lack of forest might be the fact in association of bats with human environment. It is also difficult to study on bats due to absence of proper reagent and availability of few species for research. We confirm high sequence similarity (>99%) among sequenced SARS CoV-2 genomes, and 96% genome identity with the bat coronavirus, confirming the notion of a zoonotic origin of SARS CoV-2.


Insects ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 786
Author(s):  
Valerie M. Anderson ◽  
Grace F. H. Sward ◽  
Christopher M. Ranger ◽  
Michael E. Reding ◽  
Luis Canas

Infestations of fungus gnats (Diptera: Sciaridae) can reduce the production of oyster mushrooms (Pleurotus spp.) grown as food crops within controlled environments. The objectives of this study were to assess the efficacy of Bacillus thuringiensis var. israelensis (Bti) and Steinernema feltiae against fungus gnat larvae. A bioassay was developed, whereby pasteurized straw was inoculated with Pleurotus columbinus and treated with Bti (Gnatrol®), S. feltiae (Nemashield®), or water. Fungus gnats (Lycoriella sp.) were released into each bioassay container for ovipositing onto the straw, thereby exposing the F1 larvae to treated or untreated substrate. Sticky cards within the containers entrapped fungus gnats emerging from the substrate as an indicator of larval survivorship. Following three bioassays, fewer fungus gnats emerged from straw treated with Bti compared to S. feltiae and the water control. Three additional bioassays using Pleurotus ostreatus also demonstrated that fewer fungus gnats emerged from straw treated with Bti compared to S. feltiae and the untreated control. Steinernema feltiae was generally ineffective. Monitoring substrate weight in the bioassay containers over time indicated that Bti and S. feltiae did not impede colonization by P. ostreatus. Incorporating Bti into straw substrate is a promising approach for managing fungus gnats infesting Pleurotus spp.


2010 ◽  
Vol 60 (11) ◽  
pp. 2535-2539 ◽  
Author(s):  
Hui-Rong Li ◽  
Yong Yu ◽  
Wei Luo ◽  
Yin-Xin Zeng

Strain ZS314T was isolated from a sandy intertidal sediment sample collected from the coastal area off the Chinese Antarctic Zhongshan Station, east Antarctica (6 ° 22′ 13″ S 7 ° 21′ 41″ E). The cells were Gram-positive, motile, short rods. The temperature range for growth was 0–26 °C and the pH for growth ranged from 5 to 10, with optimum growth occurring within the temperature range 18–23 °C and pH range 6.0–8.0. Growth occurred in the presence of 0–6 % (w/v) NaCl, with optimum growth occurring in the presence of 2–4 % (w/v) NaCl. Strain ZS314T had MK-10 as the major menaquinone and anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0 as major fatty acids. The cell-wall peptidoglycan type was B2β with ornithine as the diagnostic diamino acid. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The genomic DNA G+C content was approximately 67 mol%. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strain ZS314T represents a new lineage in the family Microbacteriaceae. On the basis of the phylogenetic analyses and phenotypic characteristics, a new genus, namely Marisediminicola gen. nov., is proposed, harbouring the novel species Marisediminicola antarctica sp. nov. with the type strain ZS314T (=DSM 22350T =CCTCC AB 209077T).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 516-521 ◽  
Author(s):  
Gaiyun Zhang ◽  
Yubian Zhang ◽  
Xijie Yin ◽  
Shuang Wang

A Gram-staining-positive, aerobic, motile and non-spore-forming actinobacteria, designated strain F10T, was isolated from a deep-sea sediment of the western Pacific Ocean. Phylogenetic and phenotypic properties of the organism supported that it belonged to the genus Nesterenkonia . Strain F10T shared highest 16S rRNA gene sequence similarity of 96.8 % with Nesterenkonia aethiopica DSM 17733T, followed by Nesterenkonia xinjiangensis YIM 70097T (96.7 %) and Nesterenkonia alba CAAS 252T (96.6 %). The organism grew at 4–50 °C, at pH 7.0–12.0 and in the presence of 0–12 % (w/v) NaCl, with optimal growth occurring at 40 °C, at pH 9.0 and in the presence of 1 % (w/v) NaCl. The peptidoglycan type was A4(alpha), l-Lys–Gly–l-Glu. The polar lipid profile of strain F10T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unknown glycolipids and two unknown lipids. The isolate contained MK-9 (92 %) and MK-8 (5.8 %) as the major components of the menaquinone system, and anteiso-C17 : 0 (50.9 %) and anteiso-C15 : 0 (29.8 %) as the predominant fatty acids. The G+C content of the genomic DNA of strain F10T was 66.2 mol%. Based on phenotypic, genotypic and phylogenetic analyses, strain F10T represents a novel species of the genus Nesterenkonia for which the name Nesterenkonia alkaliphila sp. nov. is proposed. The type strain is F10T ( = LMG 28112T = CGMCC 1.12781T = JCM 19766T = MCCC 1A09946T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1515-1520 ◽  
Author(s):  
Jaewoo Yoon ◽  
Satoru Matsuda ◽  
Kyoko Adachi ◽  
Hiroaki Kasai ◽  
Akira Yokota

A Gram-negative-staining, obligately aerobic, non-motile, rod-shaped and chemoheterotrophic bacterium, designated strain MN1-1006T, was isolated from an ascidian (sea squirt) sample, and was studied using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the new isolate shared approximately 93–99% sequence similarity with recognized species of the genus Rubritalea within the phylum ‘Verrucomicrobia’. DNA–DNA hybridization values between strain MN1-1006T and Rubritalea squalenifaciens HOact23T and Rubritalea sabuli YM29-052T were 57% and 14.5%, respectively. Strain MN1-1006T produced carotenoid compounds that rendered the cell biomass a reddish pink colour. The strain also contained squalene. The cell-wall peptidoglycan of the novel strain contained muramic acid and meso-diaminopimelic acid. The DNA G+C content of strain MN1-1006T was 51.4 mol%. The major cellular fatty acids were iso-C14:0, iso-C16:0 and anteiso-C15:0. The major isoprenoid quinone was MK-9. On the basis of these data, it was concluded that strain MN1-1006T represents a novel species of the genus Rubritalea, for which the name Rubritalea halochordaticola sp. nov. is proposed. The type strain is MN1-1006T ( = KCTC 23186T = NBRC 107102T).


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2241-2247 ◽  
Author(s):  
Judy Kolberg ◽  
Hans-Jürgen Busse ◽  
Thomas Wilke ◽  
Patrick Schubert ◽  
Peter Kämpfer ◽  
...  

An orange-pigmented, Gram-staining-negative, rod-shaped bacterium, designated 96_Hippo_TS_3/13T was isolated from the brood pouch of a diseased seahorse male of the species Hippocampus barbouri from the animal facility of the University of Giessen, Germany. Phylogenetic analyses based on the nearly full-length 16S rRNA gene sequence placed strain 96_Hippo_TS_3/13T into the monophyletic cluster of the genus Mesonia within the family Flavobacteriaceae. However, the strain shared only 92.2–93.8 % sequence similarity to type strains of species of the genus Mesonia, with highest sequence similarity to the type strain of Mesonia aquimarina. Cellular fatty acid analysis showed a Mesonia-typical fatty acid profile including several branched and hydroxyl fatty acids with highest amounts of iso-C15 : 0 (40.9 %) followed by iso-C17 : 0 3-OH (14.8 %). In the polyamine pattern, sym-homospermidine was predominant. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. The quinone system contained exclusively menaquinone MK-6. The only identified compound in the polar lipid profile was phosphatidylethanolamine present in major amounts. Additionally, major amounts of an unidentified aminolipid and two unidentified lipids not containing a phosphate group, an amino group or a sugar residue were detected. The genomic G+C content of strain 96_Hippo_TS_3/13T was 30 mol%. Based on genotypic, chemotaxonomic and physiological characterizations we propose a novel species of the genus Mesonia, Mesonia hippocampi sp. nov., with strain 96_Hippo_TS_3/13T ( = CIP 110839T =  LMG 28572T = CCM 8557T) as the type strain. An emended description of the genus Mesonia is also provided.


2005 ◽  
Vol 55 (3) ◽  
pp. 1167-1170 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Kook Hee Kang ◽  
Soo-Hwan Yeo ◽  
Tae-Kwang Oh

A Gram-negative, non-spore-forming, yellow-pigmented, slightly halophilic bacterial strain, SW-109T, was isolated from a tidal flat of the Yellow Sea in Korea, and subjected to a polyphasic taxonomic study. This isolate did not produce bacteriochlorophyll a and contained ubiquinone-10 as the predominant respiratory lipoquinone and C18 : 1 ω7c as the major fatty acid. The DNA G+C content was 60·3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SW-109T is phylogenetically affiliated to the genus Erythrobacter of the family Sphingomonadaceae. Strain SW-109T exhibited levels of 16S rRNA gene sequence similarity to the type strains of Erythrobacter species of 94·0–96·3 %, making it possible to categorize strain SW-109T as a species that is separate from previously recognized Erythrobacter species. On the basis of its phenotypic properties and phylogenetic distinctiveness, SW-109T (=KCTC 12311T=JCM 12599T) was classified as the type strain of a novel Erythrobacter species, for which the name Erythrobacter luteolus sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document