scholarly journals In vivo optogenetic stimulation of the primate retina activates the visual cortex after long-term transduction

2021 ◽  
Author(s):  
Antoine Chaffiol ◽  
Matthieu Provansal ◽  
Corentin Joffrois ◽  
Kévin Blaize ◽  
Guillaume Labernede ◽  
...  

SummaryVarious therapeutic strategies for vision restoration have been developed, including retinal prostheses [1–4], stem cell transplantation [5–8] and optogenetic therapies [9,10,19,11–18]. In optogenetic therapy, the residual retinal neurons surviving the pathological degenerative process are rendered light-sensitive. Using this approach, we targeted the retinal ganglion cells (RGCs) through the in vivo expression of an ectopic light-sensitive ion channel, ChrimsonR [13] coupled to the fluorescent reporter tdTomato. The application of this strategy to blind patients [20] suffering from retinal dystrophies raises important concerns about the long-term functional expression of efficient signal transmission to higher brain centers (i.e. the visual cortex). We have previously shown that the transduced retina displays high spatiotemporal resolution ex vivo, compatible with the perception of highly dynamic visual scenes at light levels suitable for use in humans. Other studies have provided evidence of retinal activation in vivo [17]. Here, we demonstrate, in non-human primates, sustained functional efficacy ~20 months after delivery of an AAV2.7m8-ChrimsonR-tdTomato vector similar to that currently undergoing clinical evaluation. Our results reveal a persistence of expression in the perifovea, mediating information transfer to higher brain centers. Indeed, we recorded visually evoked potentials in the primary visual cortex of anesthetized animals in response to optogenetic retinal activation. We used an intravitreal injection of synaptic blockers to isolate the cortical component resulting from the in vivo optogenetic stimulation of primate RGCs. Our findings demonstrate the long-term functional efficacy of optogenetic retinal information transfer to the brain in vivo.

Author(s):  
Antoine Chaffiol ◽  
Matthieu Provansal ◽  
Corentin Joffrois ◽  
Kévin Blaize ◽  
Guillaume Labernede ◽  
...  

2018 ◽  
Author(s):  
Christian R. Lee ◽  
Alex J. Yonk ◽  
Joost Wiskerke ◽  
Kenneth G. Paradiso ◽  
James M. Tepper ◽  
...  

SummaryThe striatum is the main input nucleus of the basal ganglia and is a key site of sensorimotor integration. While the striatum receives extensive excitatory afferents from the cerebral cortex, the influence of different cortical areas on striatal circuitry and behavior is unknown. Here we find that corticostriatal inputs from whisker-related primary somatosensory (S1) and motor (M1) cortex differentially innervate projection neurons and interneurons in the dorsal striatum, and exert opposing effects on sensory-guided behavior. Optogenetic stimulation of S1-corticostriatal afferents in ex vivo recordings produced larger postsynaptic potentials in striatal parvalbumin (PV)-expressing interneurons than D1- or D2-expressing spiny projection neurons (SPNs), an effect not observed for M1-corticostriatal afferents. Critically, in vivo optogenetic stimulation of S1-corticostriatal afferents produced task-specific behavioral inhibition, which was bidirectionally modulated by striatal PV interneurons. Optogenetic stimulation of M1 afferents produced the opposite behavioral effect. Thus, our results suggest opposing roles for sensory and motor cortex in behavioral choice via distinct influences on striatal circuitry.


2019 ◽  
Vol 20 (12) ◽  
pp. 3012 ◽  
Author(s):  
Beatriz Vidal-Villegas ◽  
Johnny Di Pierdomenico ◽  
Juan A Miralles de Imperial-Ollero ◽  
Arturo Ortín-Martínez ◽  
Francisco M Nadal-Nicolás ◽  
...  

We studied short- and long-term effects of intravitreal injection of N-methyl-d-aspartate (NMDA) on melanopsin-containing (m+) and non-melanopsin-containing (Brn3a+) retinal ganglion cells (RGCs). In adult SD-rats, the left eye received a single intravitreal injection of 5µL of 100nM NMDA. At 3 and 15 months, retinal thickness was measured in vivo using Spectral Domain-Optical Coherence Tomography (SD-OCT). Ex vivo analyses were done at 3, 7, or 14 days or 15 months after damage. Whole-mounted retinas were immunolabelled for brain-specific homeobox/POU domain protein 3A (Brn3a) and melanopsin (m), the total number of Brn3a+RGCs and m+RGCs were quantified, and their topography represented. In control retinas, the mean total numbers of Brn3a+RGCs and m+RGCs were 78,903 ± 3572 and 2358 ± 144 (mean ± SD; n = 10), respectively. In the NMDA injected retinas, Brn3a+RGCs numbers diminished to 49%, 28%, 24%, and 19%, at 3, 7, 14 days, and 15 months, respectively. There was no further loss between 7 days and 15 months. The number of immunoidentified m+RGCs decreased significantly at 3 days, recovered between 3 and 7 days, and were back to normal thereafter. OCT measurements revealed a significant thinning of the left retinas at 3 and 15 months. Intravitreal injections of NMDA induced within a week a rapid loss of 72% of Brn3a+RGCs, a transient downregulation of melanopsin expression (but not m+RGC death), and a thinning of the inner retinal layers.


2021 ◽  
Author(s):  
Sara Cadoni ◽  
Charlie Demene ◽  
Matthieu Provansal ◽  
Diep Nguyen ◽  
Dasha Nelidova ◽  
...  

Remote, precisely controlled activation of the brain is a fundamental challenge in the development of brain machine interfaces providing feasible rehabilitation strategies for neurological disorders. Low-frequency ultrasound stimulation can be used to modulate neuronal activity deep in the brain, but this approach lacks spatial resolution and cellular selectivity and loads the brain with high levels of acoustic energy. The combination of the expression of ultrasound-sensitive proteins with ultrasound stimulation (sonogenetic stimulation) can provide cellular selectivity and higher sensitivity, but such strategies have been subject to severe limitations in terms of spatiotemporal resolution in vivo, precluding their use for real-life applications. We used the expression of large-conductance mechanosensitive ion channels (MscL) with high-frequency ultrasonic stimulation for a duration of milliseconds to activate neurons selectively at a relatively high spatiotemporal resolution in the rat retina ex vivo and the primary visual cortex of rodents in vivo. This spatiotemporal resolution was achieved at low energy levels associated with negligible tissue heating and far below those leading to complications in ultrasound neuromodulation. We showed, in an associative learning test, that sonogenetic stimulation of the visual cortex generated light perception. Our findings demonstrate that sonogenetic stimulation is compatible with millisecond pattern presentation for visual restoration at the cortical level. They represent a step towards the precise transfer of information over large distances to the cortical and subcortical regions of the brain via an approach less invasive than that associated with current brain machine interfaces and with a wide range of applications in neurological disorders.


Author(s):  
Beatriz Vidal-Villegas ◽  
Johnny Di Pierdomenico ◽  
Juan Antonio Miralles de Imperial-Ollero ◽  
Arturo Ortín-Martínez ◽  
Francisco Manuel Nadal-Nicolás ◽  
...  

We studied short- and long-term effects of intravitreal injection of N-methyl-D-aspartate (NMDA) on melanopsin-containing (m+) and non-melanopsin-containing (Brn3a+) retinal ganglion cells (RGCs). In adult SD-rats, the left eye received  a single intravitreal injection of 5µL of 100nM NMDA. At 3 and 15 months, retinal thickness was measured in vivo using SD-OCT.  Ex vivo analyses were done at 3, 7, 14 days or 15 months after damage. Whole-mounted retinas were immunolabelled for Brn3a and melanopsin, the total number of Brn3a+RGCs and m+RGCs were quantified and their topography represented. In control retinas, the mean total numbers of Brn3a+RGCs and m+RGCs were 78,903±3,572 and 2,358±144 (mean ± SD; n=10), respectively. In the NMDA injected retinas, Brn3a+RGCs numbers diminished to 50% and 25%, at 3 and 14 days, respectively, but there was no further loss up to 15 months. The number of immunoidentified m+RGCs decreased significantly at 3 days, recovered between 3-7 days and was back to normal thereafter. OCT measurements revealed a significant thinning of the left retinas at 3 and 15 months. Intravitreal injections of NMDA induce a rapid loss of 75% of Brn3a+RGCs, a transient downregulation of melanopsin expression but not m+RGC death, and a thinning of the inner retinal layers.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Philipp Gutruf ◽  
Rose T. Yin ◽  
K. Benjamin Lee ◽  
Jokubas Ausra ◽  
Jaclyn A. Brennan ◽  
...  

AbstractSmall animals support a wide range of pathological phenotypes and genotypes as versatile, affordable models for pathogenesis of cardiovascular diseases and for exploration of strategies in electrotherapy, gene therapy, and optogenetics. Pacing tools in such contexts are currently limited to tethered embodiments that constrain animal behaviors and experimental designs. Here, we introduce a highly miniaturized wireless energy-harvesting and digital communication electronics for thin, miniaturized pacing platforms weighing 110 mg with capabilities for subdermal implantation and tolerance to over 200,000 multiaxial cycles of strain without degradation in electrical or optical performance. Multimodal and multisite pacing in ex vivo and in vivo studies over many days demonstrate chronic stability and excellent biocompatibility. Optogenetic stimulation of cardiac cycles with in-animal control and induction of heart failure through chronic pacing serve as examples of modes of operation relevant to fundamental and applied cardiovascular research and biomedical technology.


2021 ◽  
Author(s):  
Michael C. Tackenberg ◽  
Jacob J. Hughey ◽  
Douglas G. McMahon

SummaryCircadian clocks play key roles in how organisms respond to and even anticipate seasonal change in day length, or photoperiod. In mammals, photoperiod is encoded by the central circadian pacemaker in the brain, the suprachiasmatic nucleus (SCN). The subpopulation of SCN neurons that secrete the neuropeptide VIP mediate the transmission of light information within the SCN neural network, suggesting a role for these neurons in circadian plasticity in response to light information that has yet to be directly tested. Here, we used in vivo optogenetic stimulation of VIPergic SCN neurons followed by ex vivo PERIOD 2::LUCIFERASE (PER2::LUC) bioluminescent imaging to test whether activation of this SCN neuron sub-population can induce SCN network changes that are hallmarks of photoperiodic encoding. We found that optogenetic stimulation designed to mimic a long photoperiod indeed altered subsequent SCN entrained phase, increased the phase dispersal of PER2 rhythms within the SCN network, and shortened SCN free-running period – similar to the effects of a true extension of photoperiod. Optogenetic stimulation also induced analogous changes on related aspects of locomotor behavior in vivo. Thus, selective activation of VIPergic SCN neurons induces photoperiodic network plasticity in the SCN which underpins photoperiodic entrainment of behavior.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Maria Mensch ◽  
Jade Dunot ◽  
Sandy M. Yishan ◽  
Samuel S. Harris ◽  
Aline Blistein ◽  
...  

Abstract Background Amyloid precursor protein (APP) processing is central to Alzheimer’s disease (AD) etiology. As early cognitive alterations in AD are strongly correlated to abnormal information processing due to increasing synaptic impairment, it is crucial to characterize how peptides generated through APP cleavage modulate synapse function. We previously described a novel APP processing pathway producing η-secretase-derived peptides (Aη) and revealed that Aη–α, the longest form of Aη produced by η-secretase and α-secretase cleavage, impaired hippocampal long-term potentiation (LTP) ex vivo and neuronal activity in vivo. Methods With the intention of going beyond this initial observation, we performed a comprehensive analysis to further characterize the effects of both Aη-α and the shorter Aη-β peptide on hippocampus function using ex vivo field electrophysiology, in vivo multiphoton calcium imaging, and in vivo electrophysiology. Results We demonstrate that both synthetic peptides acutely impair LTP at low nanomolar concentrations ex vivo and reveal the N-terminus to be a primary site of activity. We further show that Aη-β, like Aη–α, inhibits neuronal activity in vivo and provide confirmation of LTP impairment by Aη–α in vivo. Conclusions These results provide novel insights into the functional role of the recently discovered η-secretase-derived products and suggest that Aη peptides represent important, pathophysiologically relevant, modulators of hippocampal network activity, with profound implications for APP-targeting therapeutic strategies in AD.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3678
Author(s):  
Vera Chernonosova ◽  
Alexandr Gostev ◽  
Ivan Murashov ◽  
Boris Chelobanov ◽  
Andrey Karpenko ◽  
...  

We examined the physicochemical properties and the biocompatibility and hemocompatibility of electrospun 3D matrices produced using polyurethane Pellethane 2363-80A (Pel-80A) blends Pel-80A with gelatin or/and bivalirudin. Two layers of vascular grafts of 1.8 mm in diameter were manufactured and studied for hemocompatibility ex vivo and functioning in the infrarenal position of Wistar rat abdominal aorta in vivo (n = 18). Expanded polytetrafluoroethylene (ePTFE) vascular grafts of similar diameter were implanted as a control (n = 18). Scaffolds produced from Pel-80A with Gel showed high stiffness with a long proportional limit and limited influence of wetting on mechanical characteristics. The electrospun matrices with gelatin have moderate capacity to support cell adhesion and proliferation (~30–47%), whereas vascular grafts with bivalirudin in the inner layer have good hemocompatibility ex vivo. The introduction of bivalirudin into grafts inhibited platelet adhesion and does not lead to a change hemolysis and D-dimers concentration. Study in vivo indicates the advantages of Pel-80A grafts over ePTFE in terms of graft occlusion, calcification level, and blood velocity after 6 months of implantation. The thickness of neointima in Pel-80A–based grafts stabilizes after three months (41.84 ± 20.21 µm) and does not increase until six months, demonstrating potential for long-term functioning without stenosis and as a suitable candidate for subsequent preclinical studies in large animals.


Sign in / Sign up

Export Citation Format

Share Document