scholarly journals Proteasome maturation factor UMP1 confers broad-spectrum disease resistance by modulating H2O2 accumulation in rice

2021 ◽  
Author(s):  
Xiao-Hong Hu ◽  
Jing Fan ◽  
Jin-Long Wu ◽  
Shuai Shen ◽  
Jia-Xue He ◽  
...  

Crops with broad-spectrum resistance (BSR) to diseases are highly desirable in agricultural production. Identification of BSR loci and dissection of the underlying mechanisms are fundamental for crop resistance breeding. Here, we describe the identification and characterization of a rice UMP1 allele, which confers race-nonspecific BSR against blast pathogen Magnaporthe oryzae. OsUMP1 encodes a proteasome maturation factor that contributes to 26S proteasome abundance and activity in rice. Modulation of OsUMP1 expression leads to proteome changes, particularly affects the amounts and activities of H2O2-degrading enzymes. Consequently, H2O2 accumulation and disease resistance are enhanced in OsUMP1-overexpressing rice but reduced in loss-of-function mutants. Elevation of OsUMP1 expression also promotes rice resistance to foliar pathogens Rhizoctonia solani and Xanthomonas oryzae pv. oryzae and a floral pathogen Ustilaginoidea virens without observable yield penalty. These results indicate a BSR pathway linking the proteasome machinery and H2O2 homeostasis, and provide a candidate gene for balancing BSR and yield traits in rice breeding.

2021 ◽  
Vol 118 (27) ◽  
pp. e2026152118
Author(s):  
Daniela Paula de Toledo Thomazella ◽  
Kyungyong Seong ◽  
Rebecca Mackelprang ◽  
Douglas Dahlbeck ◽  
Yu Geng ◽  
...  

Plant diseases are among the major causes of crop yield losses around the world. To confer disease resistance, conventional breeding relies on the deployment of single resistance (R) genes. However, this strategy has been easily overcome by constantly evolving pathogens. Disabling susceptibility (S) genes is a promising alternative to R genes in breeding programs, as it usually offers durable and broad-spectrum disease resistance. In Arabidopsis, the S gene DMR6 (AtDMR6) encodes an enzyme identified as a susceptibility factor to bacterial and oomycete pathogens. Here, we present a model-to-crop translational work in which we characterize two AtDMR6 orthologs in tomato, SlDMR6-1 and SlDMR6-2. We show that SlDMR6-1, but not SlDMR6-2, is up-regulated by pathogen infection. In agreement, Sldmr6-1 mutants display enhanced resistance against different classes of pathogens, such as bacteria, oomycete, and fungi. Notably, disease resistance correlates with increased salicylic acid (SA) levels and transcriptional activation of immune responses. Furthermore, we demonstrate that SlDMR6-1 and SlDMR6-2 display SA-5 hydroxylase activity, thus contributing to the elucidation of the enzymatic function of DMR6. We then propose that SlDMR6 duplication in tomato resulted in subsequent subfunctionalization, in which SlDMR6-2 specialized in balancing SA levels in flowers/fruits, while SlDMR6-1 conserved the ability to fine-tune SA levels during pathogen infection of the plant vegetative tissues. Overall, this work not only corroborates a mechanism underlying SA homeostasis in plants, but also presents a promising strategy for engineering broad-spectrum and durable disease resistance in crops.


Author(s):  
Jane S. Paulsen

Huntington disease (HD) is a autosomal dominant neurodegenerative disease caused by expansion of a trinucleotide repeat (cytosine, adenine, and guanine [CAG]) on the short arm of chromosome four. Average age of motor diagnosis is 39 years, and age at diagnosis is associated with the length of the CAG mutation. The prodrome of HD can be recognized 15 years prior to motor diagnosis and is characterized by subtle impairments in emotional recognition, smell identification, speed of processing, time estimation and production, and psychiatric abnormalities. HD shows particular vulnerability of the medium spiny neuron in the basal ganglia. Progressive brain dysfunction and neuron death lead to insidious loss of function in motor, cognitive, and behavioral control over 34 years (17 prodromal and 17 post-diagnosis). Treatment plans rely on genetic counseling, psychiatric symptom treatment as needed, physical therapy, and environmental modifications. There are two treatments for the reduction of chorea, but there are no disease-modifying therapies. Experimental therapeutics are rapidly emerging with multiple and various targets, however, and gene therapies to silence the mutant HD gene are currently ongoing. This chapter reviews clinical and neuropathological descriptions of HD and discusses potential underlying mechanisms and animal models, diagnostic and clinical assessments used to characterize and track the disease, treatment planning, and challenges for research to advance care.


PLoS Genetics ◽  
2013 ◽  
Vol 9 (9) ◽  
pp. e1003766 ◽  
Author(s):  
Carine Huard-Chauveau ◽  
Laure Perchepied ◽  
Marilyne Debieu ◽  
Susana Rivas ◽  
Thomas Kroj ◽  
...  

2017 ◽  
Vol 234 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Li Zhang ◽  
XiaoXin Zhang ◽  
Xuejing Zhang ◽  
Yu Lu ◽  
Lei Li ◽  
...  

MicroRNAs (MiRNAs) play important regulatory roles in many cellular processes. MiR-143 is highly enriched in the mouse ovary, but its roles and underlying mechanisms are not well understood. In the current study, we show that miR-143 is located in granulosa cells of primary, secondary and antral follicles. To explore the specific functions of miR-143, we transfected miR-143 inhibitor into primary cultured granulosa cells to study the loss of function of miR-143 and the results showed that miR-143 silencing significantly increased estradiol production and steroidogenesis-related gene expression. Moreover, our in vivo and in vitro studies showed that follicular stimulating hormone (FSH) significantly decreased miR-143 expression. This function of miR-143 is accomplished by its binding to the 3’-UTR of KRAS mRNA. Furthermore, our results demonstrated that miR-143 acts as a negative regulating molecule mediating the signaling pathway of FSH and affecting estradiol production by targeting KRAS. MiR-143 also negatively acts in regulating granulosa cells proliferation and cell cycle-related genes expression. These findings indicate that miR-143 plays vital roles in FSH-induced estradiol production and granulosa cell proliferation, providing a novel mechanism that involves miRNA in regulating granulosa cell functions.


2021 ◽  
Author(s):  
Xingyu An ◽  
Hui Zhang ◽  
Jinlu Li ◽  
Rui Yang ◽  
Qianchun Zeng ◽  
...  

Abstract Background: The molecular mechanism of durable and broad-spectrum resistance to rice blast disease in japonica rice variety is still very little known. Ziyu44, a local japonica rice variety in Yunnan Province of China, has shown durable broad-spectrum blast resistance for more than 30 years, and provides an opportunity for us to explore the molecular basis of broad-spectrum resistance to rice blast in japonica rice variety.Methods and Results: We conducted a comparative study of mycelium growth, aposporium formation, the accumulation of salicylate(SA), jasmonate(JA) and H2O2, the expression of SA- and JA-associated genes between Ziyu44 and susceptible variety Jiangnanxiangnuo (JNXN) upon M. oryzae infection. We found that appressorium formation and invasive hyphae extention were greatly inhibited in Ziyu 44 leaves compared with that in JNXN leaves. Both Ziyu 44 and JNXN plants maintained high levels of baseline SA and did not show increased accumulation of SA after inoculation with M. oryzae, while the levels of baseline JA in Ziyu 44 and JNXN plants were relatively low, and the accumulation of JA exhibited markedly increased in Ziyu 44 plants upon M. oryzae infection. The expression levels of key genes involving JA and SA signaling pathway OsCOI1b, OsNPR1, OsMPK6 as well as pathogenesis-related (PR) genes OsPR1a, OsPR1b and OsPBZ1, were markedly up-regulated in Ziyu44. Conclusions: The level of endogenous JA is critical for synchronous activation of SA and JA signaling pathway, up-regulating PR gene expression and enhancing disease resistance against rice blast in Ziyu44.


2020 ◽  
Author(s):  
Jiyoung Lee ◽  
Yeonjoo Kim ◽  
Paris Ataliotis ◽  
Hyung-Goo Kim ◽  
Dae-Won Kim ◽  
...  

ABSTRACTMutations of WDR11 are associated with Kallmann syndrome (KS) and congenital hypogonadotrophic hypogonadism (CHH), typically caused by defective functions of gonadotrophin-releasing hormone (GnRH) neurones in the brain. We previously reported that Wdr11 knockout mice show profound infertility with significantly fewer germ cells present in the gonads. To understand the underlying mechanisms mediated by WDR11 in these processes, we investigated the effects of Wdr11 deletion on primordial germ cell (PGC) development. Using live-tracking of PGCs and primary co-cultures of genital ridges (GR), we demonstrated that Wdr11-deficient embryos contained reduced numbers of PGCs which had delayed migration due to significantly decreased proliferation and motility. We found primary cilia-dependent canonical Hedgehog (Hh) signalling was required for proliferation of the somatic mesenchymal cells of GR, while primary cilia-independent non-canonical Hh signalling mediated by Ptch2/Gas1 and downstream effectors Src and Creb was required for PGC proliferation and migration, which was disrupted by the loss of function mutations of WDR11. Therefore, canonical and non-canonical Hh signalling are differentially involved in the development of somatic and germ cell components of the gonads, and WDR11 is required for both of these pathways operating in parallel in GR and PGCs, respectively, during normal PGC development. Our study provides a mechanistic link between the development of GnRH neurones and germ cells mediated by WDR11, which may underlie some cases of KS/CHH and ciliopathies.


2020 ◽  
Author(s):  
Yangyang Liu ◽  
Lili Zhang ◽  
Michael Melzer ◽  
Liping Shen ◽  
Zhiwen Sun ◽  
...  

AbstractThe determination of spike architecture is critical to grain yield in wheat (Triticum aestivum), yet the underlying mechanisms remain largely unknown. Here, we measured 51 traits associated with spike architecture and floral development in 197 wheat accessions with photoperiod sensitive and insensitive alleles. We included five distinct allele combinations at the Photoperiod-1 (Ppd-1) loci. A systematic dissection of all recorded phenotypes revealed connections between floral development, spike architecture and grain yield. Modifying the durations of spikelet primordia initiation did not necessarily affect spikelet number. In addition, Ppd-1 loci clearly influenced rachis dry weight, pointing to the rachis vascular system as a potential target for higher yield. Ppd-1 displayed opposite effects on the durations of pre and post-anthesis phases. Ppd-1 controlled carpel size, but not anther size. Finally, the photoperiod-insensitive alleles of Ppd-1 triggered floral degeneration. In parallel, we profiled the spike transcriptome at six stages and four positions in three Ppd-1 genotypes which consists of 234 samples. Integrating phenotypic and expression data suggested that loss of function in Ppd-1 loci delayed floral degeneration by regulating autophagy and extended floret development by regulating genes in different families. Therefore, we concluded that Ppd-1 remodels spike architecture by regulating floral development in wheat.


2018 ◽  
Vol 218 (2) ◽  
pp. 661-680 ◽  
Author(s):  
Sara Sopeña-Torres ◽  
Lucía Jordá ◽  
Clara Sánchez-Rodríguez ◽  
Eva Miedes ◽  
Viviana Escudero ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Anfei Fang ◽  
Zhuangyuan Fu ◽  
Zexiong Wang ◽  
Yuhang Fu ◽  
Yubao Qin ◽  
...  

Rice false smut caused by Ustilaginoidea virens is currently one of the most devastating fungal diseases of rice panicles worldwide. In this study, two novel molecular markers derived from SNP-rich genomic DNA fragments and a previously reported molecular marker were used for analyzing the genetic diversity and population structure of 167 U. virens isolates collected from nine areas in Sichuan-Chongqing region, China. A total of 62 haplotypes were identified, and a few haplotypes with high frequency were found and distributed in two to three areas, suggesting gene flow among different geographical populations. All isolates were divided into six genetic groups. The groups Ⅰ and Ⅵ were the largest including 61 and 48 isolates, respectively. The pairwise FST values showed significant genetic differentiation among all compared geographical populations. AMOVA showed that intergroup genetic variation accounted for 40.17% of the total genetic variation, while 59.83% of genetic variation came from intragroup. The UPGMA dendrogram and population structure revealed that the genetic composition of isolates collected from ST (Santai), NC (Nanchong), YC (Yongchuan), and WS (Wansheng) dominated by the same genetic subgroup was different from those collected from other areas. In addition, genetic recombination was found in a few isolates. These findings will help to improve the strategies for rice false smut management and resistance breeding, such as evaluating breeding lines with different isolates or haplotypes at different elevations and landforms.


Sign in / Sign up

Export Citation Format

Share Document