scholarly journals Expression and protein sequence analyses of zebrafish impg2a and impg2b, two proteoglycans of the interphotoreceptor matrix

2021 ◽  
Author(s):  
M.E. Castellini ◽  
G. Spagnolli ◽  
E. Biasini ◽  
S. Casarosa ◽  
A. Messina

AbstractPhotoreceptor outer segments projecting from the surface of the neural retina toward the retinal pigment epithelium (RPE) are surrounded by a carbohydrate-rich matrix, the interphotoreceptor matrix (IPM) [1,2]. This extracellular compartment is necessary for physiological retinal function. However, specific roles for molecules characterizing the IPM have not been clearly defined [3]. Recent studies have found the presence of nonsense mutations in the interphotoreceptor matrix proteoglycan 2 (IMPG2) gene in patients affected by autosomal recessive Retinitis Pigmentosa (arRP) [4,5] and autosomal dominant and recessive vitelliform macular dystrophy (VMD) [6,7]. The gene encodes for a proteoglycan synthesized by photoreceptors and secreted in the IPM. However, little is known about the function and structure of this protein. We used the teleost zebrafish (D.rerio) as a model to study IMPG2 expression both during development and in adulthood, as its retina is very similar in humans [8]. In zebrafish, there are two IMPG2 proteins, IMPG2a and IMPG2b. We generated a phylogenetic tree based on IMPG2 protein sequence similarity among different vertebrate species, showing a significant similarity despite the evolutionary distance between humans and teleosts. In fact, human IMPG2 and D.rerio IMPG2a and IMPG2b share conserved SEA and EGF-like domains. Homology models of these domains were obtained by using the iTasser server. Finally, expression analyses of impg2a and impg2b during development and in the adult fish showed expression of both mRNAs starting from 3 days post fertilization (dpf) in the outer nuclear layer of zebrafish retina that continues throughout adulthood. This data lays the groundwork for the generation of novel and most needed animal models for the study of IMPG2-related inherited retinal dystrophies.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Giovanna Carnovale Scalzo ◽  
Adriano Carnevali ◽  
Gabriele Piccoli ◽  
Domenico Ceravolo ◽  
Donatella Bruzzichessi ◽  
...  

Abstract Background To report the first Italian case of hypotrichosis with juvenile macular dystrophy complicated by macular neovascularization diagnosed through multimodal imaging. Case presentation An 11-year-old boy was referred to our Institution for bilateral maculopathy of unknown origin. Multimodal imaging helps the diagnosis of Juvenile Macular Dystrophy with Hypotrichosis (HJMD). Fundus examination showed several alterations of the retinal pigment epithelium and circular pigmented area of chorioretinal atrophy. Structural spectral domain optical coherence tomography (OCT) showed some backscattering phenomenon with several alterations of retinal pigment epithelium and photoreceptor layer in both eyes. Moreover, OCT showed hyperreflective lesion beneath the neuroepithelium in left eye. OCT angiography (OCT-A) revealed a pathologic neovascular network in choriocapillaris plexus, probably the result of a fibrovascular membrane. Multifocal electroretinograms (MfERGs) showed functional alterations in 12.22° of the central retina. In order to confirm the suspicion of HJMD, the child and both parents underwent genetic testing. Both parents resulted to be heterozygous healthy carriers of a single variation. Conclusion Multimodal imaging, in particular OCT-A, is a useful aid, along to clinical findings and genetics, for the diagnosis of inherited retinal dystrophies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
S. Scott Whitmore ◽  
Christopher R. Fortenbach ◽  
Justine L. Cheng ◽  
Adam P. DeLuca ◽  
D. Brice Critser ◽  
...  

Abstract Stargardt disease, the most common inherited macular dystrophy, is characterized by vision loss due to central retinal atrophy. Although clinical trials for Stargardt are currently underway, the disease is typically slowly progressive, and objective, imaging-based biomarkers are critically needed. In this retrospective, observational study, we characterize the thicknesses of individual retinal sublayers by macular optical coherence tomography (OCT) in a large cohort of patients with molecularly-confirmed, ABCA4-associated Stargardt disease (STGD1) relative to normal controls. Automated segmentation of retinal sublayers was performed with manual correction as needed, and thicknesses in various macular regions were compared using mixed effects models. Relative to controls (42 eyes, 40 patients), STGD1 patients (107 eyes, 63 patients) had slight thickening of the nerve fiber layer and retinal pigment epithelium-Bruch’s membrane, with thinning in other sublayers, especially the outer nuclear layer (ONL) (p < 0.0015). When comparing the rate of retinal sublayer thickness change over time (mean follow-up 3.9 years for STGD1, 2.5 years for controls), STGD1 retinas thinned faster than controls in the outer retina (ONL to photoreceptor outer segments). OCT-based retinal sublayer thickness measurements are feasible in STGD1 patients and may provide objective measures of disease progression or treatment response.


2021 ◽  
Vol 13 ◽  
pp. 251584142199719
Author(s):  
Simranjeet Singh Grewal ◽  
Joseph J. Smith ◽  
Amanda-Jayne F. Carr

Bestrophinopathies are a group of clinically distinct inherited retinal dystrophies that typically affect the macular region, an area synonymous with central high acuity vision. This spectrum of disorders is caused by mutations in bestrophin1 ( BEST1), a protein thought to act as a Ca2+-activated Cl- channel in the retinal pigment epithelium (RPE) of the eye. Although bestrophinopathies are rare, over 250 individual pathological mutations have been identified in the BEST1 gene, with many reported to have various clinical expressivity and incomplete penetrance. With no current clinical treatments available for patients with bestrophinopathies, understanding the role of BEST1 in cells and the pathological pathways underlying disease has become a priority. Induced pluripotent stem cell (iPSC) technology is helping to uncover disease mechanisms and develop treatments for RPE diseases, like bestrophinopathies. Here, we provide a comprehensive review of the pathophysiology of bestrophinopathies and highlight how patient-derived iPSC-RPE are being used to test new genomic therapies in vitro.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fukashi Ishibashi ◽  
Aiko Kosaka ◽  
Mitra Tavakoli

AimsTo establish the sequential changes by glycemic control in the mean thickness, volume and reflectance of the macular photoreceptor layers (MPRLs) and retinal pigment epithelium in patients with type 2 diabetes without diabetic retinopathy.MethodsThirty-one poorly controlled (HbA1c &gt; 8.0%) patients with type 2 diabetes without diabetic retinopathy undergoing glycemic control and 39 control subjects with normal HbA1c levels (&lt; 5.9%) underwent periodical full medical, neurological and ophthalmological examinations over 2 years. Glycemic variability was evaluated by standard deviation and coefficient of variation of monthly measured HbA1c levels and casual plasma glucose. 3D swept source-optical coherence tomography (OCT) and OCT-Explorer-generated enface thickness, volume and reflectance images for 9 subfields defined by Early Treatment Diabetic Retinopathy Study of 4 MPRLs {outer nuclear layer, ellipsoid zone, photoreceptor outer segment (PROS) and interdigitation zone} and retinal pigment epithelium were acquired every 3 months.ResultsGlycemic control sequentially restored the thickness and volume at 6, 4 and 5 subfields of outer nuclear layer, ellipsoid zone and PROS, respectively. The thickness and volume of outer nuclear layer were restored related to the decrease in HbA1c and casual plasma glucose levels, but not related to glycemic variability and neurological tests. The reflectance of MPRLs and retinal pigment epithelium in patients was marginally weaker than controls, and further decreased at 6 or 15 months during glycemic control. The reduction at 6 months coincided with high HbA1c levels.ConclusionGlycemic control sequentially restored the some MPRL thickness, especially of outer nuclear layer. In contrast, high glucose during glycemic control decreased reflectance and may lead to the development of diabetic retinopathy induced by glycemic control. The repeated OCT examinations can clarify the benefit and hazard of glycemic control to the diabetic retinopathy.


2021 ◽  
Vol 14 (1) ◽  
pp. 80-88
Author(s):  
M. E. Weener ◽  
D. S. Atarshchikov ◽  
V. V. Kadyshev ◽  
I. V. Zolnikova ◽  
A. M. Demchinsky ◽  
...  

This literature review offers a detailed description of the genes and proteins involved in pathophysiological processes in isolated retinitis pigmentosa (RP). To date, 84 genes and 7 candidate genes have been described for non-syndromic RP. Each of these genes encodes a protein that plays a role in vital processes in the retina and / or retinal pigment epithelium, including the cascade of phototransduction (transmission of the visual signal), the visual cycle, ciliary transport, the environment of photoreceptor cilia and the interphotoreceptor matrix. The identification and study of pathophysiological pathways affected in non-syndromic RP is important for understanding the main pathogenic ways and developing approaches to target treatment.


Antioxidants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1154 ◽  
Author(s):  
Concetta Scimone ◽  
Simona Alibrandi ◽  
Sergio Zaccaria Scalinci ◽  
Edoardo Trovato Battagliola ◽  
Rosalia D’Angelo ◽  
...  

Inherited retinal dystrophies are characterized by photoreceptor death. Oxidative stress usually occurs, increasing vision loss, and oxidative damage is often reported in retinitis pigmentosa (RP). More than 300 genes have been reported as RP causing. In contrast, choroidal neovascularization (CNV) only occasionally develops in the late stages of RP. We herein study the regulation of RP causative genes that are likely linked to CNV onset under oxidative conditions. We studied how the endogenous adduct N-retinylidene-N-retinylethanolamine (A2E) affects the expression of angiogenic markers in human retinal pigment epithelium (H-RPE) cells and a possible correlation with RP-causing genes. H-RPE cells were exposed to A2E and blue light for 3 and 6h. By transcriptome analysis, genes differentially expressed between A2E-treated cells and untreated ones were detected. The quantification of differential gene expression was performed by the Limma R package. Enrichment pathway analysis by the FunRich tool and gene prioritization by ToppGene allowed us to identify dysregulated genes involved in angiogenesis and linked to RP development. Two RP causative genes, AHR and ROM1, can be associated with an increased risk of CNV development. Genetic analysis of RP patients affected by CNV will confirm this hypothesis.


2021 ◽  
pp. 112067212199057
Author(s):  
Dario Pasquale Mucciolo ◽  
Myrta Lippera ◽  
Dario Giorgio ◽  
Andrea Sodi ◽  
Ilaria Passerini ◽  
...  

Purpose: To evaluate the correlation between Best Corrected Visual Acuity (BCVA) and the following parameters in Stargardt Disease (STGD): Central Retinal Thickness (CR-T), Central Outer Nuclear Layer Thickness (C-ONL-T), Areas of macular Photoreceptor loss (PHRa), and Retinal Pigment Epithelium (RPE) loss (RPEa). Methods: A total of 64 eyes of 32 STGD patients were included in the study. All patients received a comprehensive ophthalmological examination, color fundus photographs, fundus auto-fluorescence imaging, and Optical Coherence Tomography (OCT). The CR-T and C-ONL-T were evaluated from standard SD-OCT scans. The PHRa and RPEa were calculated from enface OCT scans (sub RPE slab and photoreceptor slab). The collected OCT parameters were evaluated for possible association with BCVA. Results: The mean macular PHRa and RPEa was 16.16 ± 13.36 and 12.05 ± 12.57 mm2 respectively. The mean CR-T measured 120.78 ± 41.49 μm while the mean C-ONL-T was assessed at 4.60 ± 13.73 μm. BCVA showed the highest correlation with the C-ONL-T ( r = −0.72; p < 0.001) while there was no correlation with the CR-T ( r = −0.17; p = 1.00). Conclusions: Enface OCT permits a rapid and precise quantitative evaluation of the macular PHR and RPE atrophy area in STGD. Nonetheless, the OCT parameter that showed the highest correlation with visual acuity in STGD was the ONL thickness.


2019 ◽  
Vol 104 (2) ◽  
pp. 173-181 ◽  
Author(s):  
Marina Riera ◽  
Víctor Abad-Morales ◽  
Rafael Navarro ◽  
Sheila Ruiz-Nogales ◽  
Pilar Méndez-Vendrell ◽  
...  

PurposeThis study aimed to identify the underlying genetic cause(s) of inherited retinal dystrophy (IRD) in 12 families of Kuwaiti origin affected by macular dystrophy and four Spanish patients affected by retinitis pigmentosa (RP).MethodsClinical diagnoses were based on standard ophthalmic evaluations (best-corrected visual acuity, retinography, fundus autofluorescence imaging, optical coherence tomography, electroretinography and visual field tests). Panel-based whole exome sequencing was used to simultaneously analyse 224 IRD genes in one affected member of each family. The putative causative variants were confirmed by Sanger sequencing and cosegregation analyses. Haplotype analysis was performed using single nucleotide polymorphisms.ResultsA homozygous missense mutation c.606C>A (p.Asp202Glu) in RP1 was found to be the molecular cause of IRD in all 12 families from Kuwait. These patients exhibited comparable symptoms, including progressive decline in visual acuity since adolescence. Fundus autofluorescence images revealed bilateral macular retinal pigment epithelium disturbances, with neither perimacular flecks nor peripheral alterations. A shared haplotype spanning at least 1.1 Mb was identified in all families, suggesting a founder effect. Furthermore, RP1 variants involving nonsense and/or frameshifting mutations (three of them novel) were identified in three Spanish autosomal-recessive RP families and one dominant RP pedigree.ConclusionThis study describes, for the first time, a macular dystrophy phenotype caused by an RP1 mutation; establishing a new genotype-phenotype correlation in this gene, expanding its mutation spectrum and further highlighting the clinical heterogeneity associated with IRD.


Sign in / Sign up

Export Citation Format

Share Document