scholarly journals A precise and adaptive neural mechanism for predictive temporal processing in the frontal cortex

2021 ◽  
Author(s):  
Nicolas Meirhaeghe ◽  
Hansem Sohn ◽  
Mehrdad Jazayeri

AbstractThe theory of predictive processing posits that the nervous system uses expectations to process information predictively. Direct empirical evidence in support of this theory however has been scarce and largely limited to sensory areas. Here, we report a precise and adaptive neural mechanism in the frontal cortex of non-human primates consistent with predictive processing of temporal events. We found that the speed at which neural states evolve over time is inversely proportional to the statistical mean of the temporal distribution of an expected stimulus. This lawful relationship was evident across multiple experiments and held true during learning: when temporal statistics underwent covert changes, neural responses underwent predictable changes that reflected the new mean. Together, these results highlight a precise mathematical relationship between temporal statistics in the environment and neural activity in the frontal cortex that could serve as a mechanistic foundation for predictive temporal processing.

2018 ◽  
Author(s):  
Nikolas A. Francis ◽  
Susanne Radtke-Schuller ◽  
Jonathan B. Fritz ◽  
Shihab A. Shamma

AbstractTask-related plasticity in the brain is triggered by changes in the behavioral meaning of sounds. We investigated plasticity in ferret dorsolateral frontal cortex (dlFC) during an auditory reversal task to study the neural correlates of proactive interference, i.e., perseveration of previously learned behavioral meanings that are no longer task-appropriate. Although the animals learned the task, target recognition decreased after reversals, indicating proactive interference. Frontal cortex responsiveness was consistent with previous findings that dlFC encodes the behavioral meaning of sounds. However, the neural responses observed here were more complex. For example, target responses were strongly enhanced, while responses to non-target tones and noises were weakly enhanced and strongly suppressed, respectively. Moreover, dlFC responsiveness reflected the proactive interference observed in behavior: target responses decreased after reversals, most significantly during incorrect behavioral responses. These findings suggest that the weak representation of behavioral meaning in dlFC may be a neural correlate of proactive interference.Significance StatementNeural activity in prefrontal cortex (PFC) is believed to enable cognitive flexibility during sensory-guided behavior. Since PFC encodes the behavioral meaning of sensory events, we hypothesized that weak representation of behavioral meaning in PFC may limit cognitive flexibility. To test this hypothesis, we recorded neural activity in ferret PFC, while ferrets performed an auditory reversal task in which the behavioral meanings of sounds were reversed during experiments. The reversal task enabled us study PFC responses during proactive interference, i.e. perseveration of previously learned behavioral meanings that are no longer task-appropriate. We found that task performance errors increased after reversals while PFC representation of behavioral meaning diminished. Our findings suggest that proactive interference may occur when PFC forms weak sensory-cognitive associations.


2020 ◽  
Author(s):  
Stewart Heitmann ◽  
G. Bard Ermentrout

AbstractThe majority of neurons in primary visual cortex respond selectively to bars of light that have a specific orientation and move in a specific direction. The spatial and temporal responses of such neurons are non-separable. How neurons accomplish that computational feat without resort to explicit time delays is unknown. We propose a novel neural mechanism whereby visual cortex computes non-separable responses by generating endogenous traveling waves of neural activity that resonate with the space-time signature of the visual stimulus. The spatiotemporal characteristics of the response are defined by the local topology of excitatory and inhibitory lateral connections in the cortex. We simulated the interaction between endogenous traveling waves and the visual stimulus using spatially distributed populations of excitatory and inhibitory neurons with Wilson-Cowan dynamics and inhibitory-surround coupling. Our model reliably detected visual gratings that moved with a given speed and direction provided that we incorporated neural competition to suppress false motion signals in the opposite direction. The findings suggest that endogenous traveling waves in visual cortex can impart direction-selectivity on neural responses without resort to explicit time delays. They also suggest a functional role for motion opponency in eliminating false motion signals.Author summaryIt is well established that the so-called ‘simple cells’ of the primary visual cortex respond preferentially to oriented bars of light that move across the visual field with a particular speed and direction. The spatiotemporal responses of such neurons are said to be non-separable because they cannot be constructed from independent spatial and temporal neural mechanisms. Contemporary theories of how neurons compute non-separable responses typically rely on finely tuned transmission delays between signals from disparate regions of the visual field. However the existence of such delays is controversial. We propose an alternative neural mechanism for computing non-separable responses that does not require transmission delays. It instead relies on the predisposition of the cortical tissue to spontaneously generate spatiotemporal waves of neural activity that travel with a particular speed and direction. We propose that the endogenous wave activity resonates with the visual stimulus to elicit direction-selective neural responses to visual motion. We demonstrate the principle in computer models and show that competition between opposing neurons robustly enhances their ability to discriminate between visual gratings that move in opposite directions.


2017 ◽  
Author(s):  
Y Yeshurun ◽  
M Nguyen ◽  
U. Hasson

AbstractChanging just a few words in a story can induce a substantial change in the overall narrative. How does the brain accumulate and process local and sparse changes, creating a unique situation model of the story, over the course of a real-life narrative? Recently, we mapped a hierarchy of processing timescales in the brain: from early sensory areas that integrate information over 10s-100s ms, to high-order areas that integrate information over many seconds to minutes. Based on this hierarchy, we hypothesize that early sensory areas would be sensitive to local changes in word use, but that there will be increasingly divergent neural responses along the processing hierarchy as higher-order areas accumulate and amplify these local changes. To test this hypothesis, we created two structurally related but interpretively distinct narratives by changing some individual words. We found that the neural response distance between the stories was amplified as story information is transferred from low-level regions (e.g. early auditory cortex) to high-level regions (e.g precuneus and prefrontal cortex) and that the neural difference between stories is highly correlated with an area’s ability to integrate information over time. Our results suggest a neural mechanism by which two similar situations become easy to distinguish.


Neuron ◽  
2021 ◽  
Vol 109 (18) ◽  
pp. 2995-3011.e5
Author(s):  
Nicolas Meirhaeghe ◽  
Hansem Sohn ◽  
Mehrdad Jazayeri

1989 ◽  
Vol 155 (S7) ◽  
pp. 93-98 ◽  
Author(s):  
Nancy C. Andreasen

When Kraepelin originally defined and described dementia praecox, he assumed that it was due to some type of neural mechanism. He hypothesised that abnormalities could occur in a variety of brain regions, including the prefrontal, auditory, and language regions of the cortex. Many members of his department, including Alzheimer and Nissl, were actively involved in the search for the neuropathological lesions that would characterise schizophrenia. Although Kraepelin did not use the term ‘negative symptoms', he describes them comprehensively and states explicitly that he believes the symptoms of schizophrenia can be explained in terms of brain dysfunction:“If it should be confirmed that the disease attacks by preference the frontal areas of the brain, the central convolutions and central lobes, this distribution would in a certain measure agree with our present views about the site of the psychic mechanisms which are principally injured by the disease. On various grounds, it is easy to believe that the frontal cortex, which is specially well developed in man, stands in closer relation to his higher intellectual abilities, and these are the faculties which in our patients invariably suffer profound loss in contrast to memory and acquired ability.” Kraepelin (1919, p. 219)


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256791
Author(s):  
Daichi Konno ◽  
Shinji Nishimoto ◽  
Takafumi Suzuki ◽  
Yuji Ikegaya ◽  
Nobuyoshi Matsumoto

The brain continuously produces internal activity in the absence of afferently salient sensory input. Spontaneous neural activity is intrinsically defined by circuit structures and associated with the mode of information processing and behavioral responses. However, the spatiotemporal dynamics of spontaneous activity in the visual cortices of behaving animals remain almost elusive. Using a custom-made electrode array, we recorded 32-site electrocorticograms in the primary and secondary visual cortex of freely behaving rats and determined the propagation patterns of spontaneous neural activity. Nonlinear dimensionality reduction and unsupervised clustering revealed multiple discrete states of the activity patterns. The activity remained stable in one state and suddenly jumped to another state. The diversity and dynamics of the internally switching cortical states would imply flexibility of neural responses to various external inputs.


2015 ◽  
Vol 27 (4) ◽  
pp. 832-841 ◽  
Author(s):  
Amanda K. Robinson ◽  
Judith Reinhard ◽  
Jason B. Mattingley

Sensory information is initially registered within anatomically and functionally segregated brain networks but is also integrated across modalities in higher cortical areas. Although considerable research has focused on uncovering the neural correlates of multisensory integration for the modalities of vision, audition, and touch, much less attention has been devoted to understanding interactions between vision and olfaction in humans. In this study, we asked how odors affect neural activity evoked by images of familiar visual objects associated with characteristic smells. We employed scalp-recorded EEG to measure visual ERPs evoked by briefly presented pictures of familiar objects, such as an orange, mint leaves, or a rose. During presentation of each visual stimulus, participants inhaled either a matching odor, a nonmatching odor, or plain air. The N1 component of the visual ERP was significantly enhanced for matching odors in women, but not in men. This is consistent with evidence that women are superior in detecting, discriminating, and identifying odors and that they have a higher gray matter concentration in olfactory areas of the OFC. We conclude that early visual processing is influenced by olfactory cues because of associations between odors and the objects that emit them, and that these associations are stronger in women than in men.


2021 ◽  
pp. 1-12
Author(s):  
Hanne Lie Kjærstad ◽  
Julian Macoveanu ◽  
Gitte Moos Knudsen ◽  
Sophia Frangou ◽  
K. Luan Phan ◽  
...  

Abstract Background Aberrant emotion regulation has been posited as a putative endophenotype of bipolar disorder (BD). We therefore aimed to compare the neural responses during voluntary down-regulation of negative emotions in a large functional magnetic resonance imaging study of BD, patients' unaffected first-degree relatives (URs), and healthy controls (HCs). Methods We compared neural activity and fronto-limbic functional connectivity during emotion regulation in response to aversive v. neutral pictures in patients recently diagnosed with BD (n = 78) in full/partial remission, their URs (n = 35), and HCs (n = 56). Results Patients showed hypo-activity in the left dorsomedial, dorsolateral, and ventrolateral prefrontal cortex (DMPFC and DLPFC) during emotion regulation while viewing aversive pictures compared to HCs, with URs displaying intermediate neural activity in these regions. There were no significant differences between patients with BD and HCs in functional connectivity from the amygdala during emotion regulation. However, exploratory analysis indicated that URs displayed more negative amygdala–DMPFC coupling compared with HCs and more negative amygdala-cingulate DLPFC coupling compared to patients with BD. At a behavioral level, patients and their URs were less able to dampen negative emotions in response aversive pictures. Conclusions The findings point to deficient recruitment of prefrontal resources and more negative fronto-amygdala coupling as neural markers of impaired emotion regulation in recently diagnosed remitted patients with BD and their URs, respectively.


2020 ◽  
Vol 30 (9) ◽  
pp. 4871-4881 ◽  
Author(s):  
Katharine A Shapcott ◽  
Joscha T Schmiedt ◽  
Kleopatra Kouroupaki ◽  
Ricardo Kienitz ◽  
Andreea Lazar ◽  
...  

Abstract In order for organisms to survive, they need to detect rewarding stimuli, for example, food or a mate, in a complex environment with many competing stimuli. These rewarding stimuli should be detected even if they are nonsalient or irrelevant to the current goal. The value-driven theory of attentional selection proposes that this detection takes place through reward-associated stimuli automatically engaging attentional mechanisms. But how this is achieved in the brain is not very well understood. Here, we investigate the effect of differential reward on the multiunit activity in visual area V4 of monkeys performing a perceptual judgment task. Surprisingly, instead of finding reward-related increases in neural responses to the perceptual target, we observed a large suppression at the onset of the reward indicating cues. Therefore, while previous research showed that reward increases neural activity, here we report a decrease. More suppression was caused by cues associated with higher reward than with lower reward, although neither cue was informative about the perceptually correct choice. This finding of reward-associated neural suppression further highlights normalization as a general cortical mechanism and is consistent with predictions of the value-driven attention theory.


Sign in / Sign up

Export Citation Format

Share Document