scholarly journals Infection of immune competent macrophages expressing functional Slc11a1 alters global gene expression, regulation of metal ions, and infection outcomes

2021 ◽  
Author(s):  
Lara N Janiszewski ◽  
Michael Minson ◽  
Mary A Allen ◽  
Robin D Dowell ◽  
Amy Palmer

Nutritional immunity involves cellular and physiological responses to invading pathogens, such as limiting iron availability, increasing exposure to bactericidal copper, and manipulating zinc      to restrict the growth of pathogens. Manipulation of zinc at the host-pathogen interface depends on both the pathogen’s identity and the nature of the host cell. Here we examine infection of bone marrow-derived macrophages from 129S6/SvEvTac mice by  Salmonella Typhimurium.  Unlike Balb/c and C57BL/6 mice, 129S6/SvEvTac mice possess a functional Slc11a1 (Nramp-1), a phagosomal transporter of divalent cations.  We carried out global RNA sequencing upon treatment with live or heat-killed  Salmonella  at 2 Hrs and 18 Hrs post-infection and observed widespread changes in metal transport, metal-dependent, and metal homeostasis genes, suggesting significant remodeling of iron, copper, and zinc availability by host cells. Changes in host cell gene expression suggest infection increases cytosolic zinc while simultaneously limiting zinc within the phagosome. Using a genetically encoded sensor, we demonstrate that cytosolic labile zinc increases 36-fold 12 hrs post-infection.  Further, manipulation of zinc in the media alters bacterial clearance and replication, with zinc depletion inhibiting both processes. Comparing our results to published data on infection of C57BL/6 macrophages revealed notable differences in metal regulation and the global immune response, with 129S6 macrophages transitioning from M1 to M2 polarization over the course of infection and showing signs of recovery. Our results reveal that functional Slc11a1 profoundly affects the transcriptional landscape upon infection. Further, our results indicate that manipulation of zinc at the host-pathogen interface is more nuanced than that of iron or copper. 129S6 macrophage leverage intricate means of manipulating zinc availability and distribution to limit the pathogen’s access to zinc while simultaneously ensuring sufficient zinc to support the immune response.

2021 ◽  
Author(s):  
Lara N. Janiszewski ◽  
Michael Minson ◽  
Mary A. Allen ◽  
Robin D. Dowell ◽  
Amy E Palmer

Nutritional immunity involves cellular and physiological responses to invading pathogens, such as limiting iron, increasing exposure to bactericidal copper, and altering zinc to restrict the growth of pathogens. Here we examine infection of bone marrow-derived macrophages from 129S6/SvEvTac mice by Salmonella Typhimurium. 129S6/SvEvTac mice possess a functional Slc11a1 (Nramp-1), a phagosomal transporter of divalent cations that plays an important role in modulating metal availability to the pathogen. We carried out global RNA sequencing upon treatment with live or heat-killed Salmonella at 2 Hrs and 18 Hrs post-infection and observed widespread changes in metal transport, metal-dependent, and metal homeostasis genes, suggesting significant remodeling of iron, copper, and zinc availability by host cells. Changes in host cell gene expression suggest infection increases cytosolic zinc while simultaneously limiting zinc within the phagosome. Using a genetically encoded sensor, we demonstrate that cytosolic labile zinc increases 36-fold 12 hrs post-infection. Further, manipulation of zinc in the media alters bacterial clearance and replication, with zinc depletion inhibiting both processes. Comparing the transcriptomic changes to published data on infection of C57BL/6 macrophages revealed notable differences in metal regulation and the global immune response. Our results reveal that 129S6 macrophages represent a distinct model system compared to C57BL/6 macrophages. Further, our results indicate that manipulation of zinc at the host-pathogen interface is more nuanced than that of iron or copper. 129S6 macrophage leverage intricate means of manipulating zinc availability and distribution to limit the pathogen’s access to zinc while simultaneously ensuring sufficient zinc to support the immune response.


Author(s):  
Joni Renee White ◽  
Priscila Dauros-Singorenko ◽  
Jiwon Hong ◽  
Frédérique Vanholsbeeck ◽  
Anthony Phillips ◽  
...  

Cells from all domains of life release extracellular vesicles (EVs), packages that carry a cargo of molecules that participate in communication, co-ordination of population behaviours, virulence and immune response mechanisms. Mammalian EVs play an increasingly recognised role to fight infection, yet may also be commandeered to disseminate pathogens and enhance infection. EVs released by bacterial pathogens may deliver toxins to host cells, signalling molecules and new DNA to other bacteria, and act as decoys, protecting infecting bacteria from immune killing. In this review, we explore the role of EVs in infection from the perspective of both the pathogen and host, and highlight their importance in the host/pathogen relationship. We highlight proposed strategies for EVs in therapeutics, and call attention to areas where existing knowledge and evidence is lacking.


2006 ◽  
Vol 74 (2) ◽  
pp. 1323-1338 ◽  
Author(s):  
Som Subhra Chatterjee ◽  
Hamid Hossain ◽  
Sonja Otten ◽  
Carsten Kuenne ◽  
Katja Kuchmina ◽  
...  

ABSTRACT Listeria monocytogenes is a gram-positive, food-borne microorganism responsible for invasive infections with a high overall mortality. L. monocytogenes is among the very few microorganisms that can induce uptake into the host cell and subsequently enter the host cell cytosol by breaching the vacuolar membrane. We infected the murine macrophage cell line P388D1 with L. monocytogenes strain EGD-e and examined the gene expression profile of L. monocytogenes inside the vacuolar and cytosolic environments of the host cell by using whole-genome microarray and mutant analyses. We found that ∼17% of the total genome was mobilized to enable adaptation for intracellular growth. Intracellularly expressed genes showed responses typical of glucose limitation within bacteria, with a decrease in the amount of mRNA encoding enzymes in the central metabolism and a temporal induction of genes involved in alternative-carbon-source utilization pathways and their regulation. Adaptive intracellular gene expression involved genes that are associated with virulence, the general stress response, cell division, and changes in cell wall structure and included many genes with unknown functions. A total of 41 genes were species specific, being absent from the genome of the nonpathogenic Listeria innocua CLIP 11262 strain. We also detected 25 genes that were strain specific, i.e., absent from the genome of the previously sequenced L. monocytogenes F2365 serotype 4b strain, suggesting heterogeneity in the gene pool required for intracellular survival of L. monocytogenes in host cells. Overall, our study provides crucial insights into the strategy of intracellular survival and measures taken by L. monocytogenes to escape the host cell responses.


2009 ◽  
Vol 77 (6) ◽  
pp. 2385-2391 ◽  
Author(s):  
Jose C. Garcia-Garcia ◽  
Kristen E. Rennoll-Bankert ◽  
Shaaretha Pelly ◽  
Aaron M. Milstone ◽  
J. Stephen Dumler

ABSTRACT Coevolution of intracellular bacterial pathogens and their host cells resulted in the appearance of effector molecules that when translocated into the host cell modulate its function, facilitating bacterial survival within the hostile host environment. Some of these effectors interact with host chromatin and other nuclear components. In this report, we show that the AnkA protein of Anaplasma phagocytophilum, which is translocated into the host cell nucleus, interacts with gene regulatory regions of host chromatin and is involved in downregulating expression of CYBB (gp91 phox ) and other key host defense genes. AnkA effector protein rapidly accumulated in nuclei of infected cells coincident with changes in CYBB transcription. AnkA interacted with transcriptional regulatory regions of the CYBB locus at sites where transcriptional regulators bind. AnkA binding to DNA occurred at regions with high AT contents. Mutation of AT stretches at these sites abrogated AnkA binding. Histone H3 acetylation decreased dramatically at the CYBB locus during A. phagocytophilum infection, particularly around AnkA binding sites. Transcription of CYBB and other defense genes was significantly decreased in AnkA-transfected HL-60 cells. These data suggest a mechanism by which intracellular pathogens directly regulate host cell gene expression mediated by nuclear effectors and changes in host chromatin structure.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Maria R. Garcia-Silva ◽  
Florencia Cabrera-Cabrera ◽  
Roberta Ferreira Cura das Neves ◽  
Thaís Souto-Padrón ◽  
Wanderley de Souza ◽  
...  

At present, noncoding small RNAs are recognized as key players in novel forms of posttranscriptional gene regulation in most eukaryotes. However, canonical small RNA pathways seem to be lost or excessively simplified in some unicellular organisms includingTrypanosoma cruziwhich lack functional RNAi pathways. Recently, we reported the presence of alternate small RNA pathways inT. cruzimainly represented by homogeneous populations of tRNA- and rRNA-derived small RNAs, which are secreted to the extracellular medium included in extracellular vesicles. Extracellular vesicle cargo could be delivered to other parasites and to mammalian susceptible cells promoting metacyclogenesis and conferring susceptibility to infection, respectively. Here we analyzed the changes in gene expression of host HeLa cells induced by extracellular vesicles fromT. cruzi. As assessed by microarray assays a large set of genes in HeLa cells were differentially expressed upon incorporation ofT. cruzi-derived extracellular vesicles. The elicited response modified mainly host cell cytoskeleton, extracellular matrix, and immune responses pathways. Some genes were also modified by the most abundant tRNA-derived small RNAs included in extracellular vesicles. These data suggest that microvesicles secreted byT. cruzicould be relevant players in early events of theT. cruzihost cell interplay.


2019 ◽  
Vol 61 (5) ◽  
pp. 601-610 ◽  
Author(s):  
Michael I. Bukrinsky ◽  
Nigora Mukhamedova ◽  
Dmitri Sviridov

Lipid rafts, solid regions of the plasma membrane enriched in cholesterol and glycosphingolipids, are essential parts of a cell. Functionally, lipid rafts present a platform that facilitates interaction of cells with the outside world. However, the unique properties of lipid rafts required to fulfill this function at the same time make them susceptible to exploitation by pathogens. Many steps of pathogen interaction with host cells, and sometimes all steps within the entire lifecycle of various pathogens, rely on host lipid rafts. Such steps as binding of pathogens to the host cells, invasion of intracellular parasites into the cell, the intracellular dwelling of parasites, microbial assembly and exit from the host cell, and microbe transfer from one cell to another all involve lipid rafts. Interaction also includes modification of lipid rafts in host cells, inflicted by pathogens from both inside and outside the cell, through contact or remotely, to advance pathogen replication, to utilize cellular resources, and/or to mitigate immune response. Here, we provide a systematic overview of how and why pathogens interact with and exploit host lipid rafts, as well as the consequences of this interaction for the host, locally and systemically, and for the microbe. We also raise the possibility of modulation of lipid rafts as a therapeutic approach against a variety of infectious agents.


2010 ◽  
Vol 54 (11) ◽  
pp. 4714-4722 ◽  
Author(s):  
Christine Hanssen Rinaldo ◽  
Rainer Gosert ◽  
Eva Bernhoff ◽  
Solrun Finstad ◽  
Hans H. Hirsch

ABSTRACT Antiviral drugs for treating polyomavirus BK (BKV) replication in polyomavirus-associated nephropathy or hemorrhagic cystitis are of considerable clinical interest. Unlike cidofovir, the lipid conjugate 1-O-hexadecyloxypropyl cidofovir (CMX001) is orally available and has not caused detectable nephrotoxicity in rodent models or human studies to date. Primary human renal proximal tubular epithelial cells were infected with BKV-Dunlop, and CMX001 was added 2 h postinfection (hpi). The intracellular and extracellular BKV DNA load was determined by quantitative PCR. Viral gene expression was examined by quantitative reverse transcription-PCR, Western blotting, and immunofluorescence microscopy. We also examined host cell viability, proliferation, metabolic activity, and DNA replication. The titration of CMX001 identified 0.31 μM as the 90% effective concentration (EC90) for reducing the extracellular BKV load at 72 hpi. BKV large T antigen mRNA and protein expression was unaffected at 24 hpi, but the intracellular BKV genome was reduced by 90% at 48 hpi. Late gene expression was reduced by 70 and 90% at 48 and 72 hpi, respectively. Comparisons of CMX001 and cidofovir EC90s from 24 to 96 hpi demonstrated that CMX001 had a more rapid and enduring effect on BKV DNA and infectious progeny at 96 hpi than cidofovir. CMX001 at 0.31 μM had little effect on overall cell metabolism but reduced bromodeoxyuridine incorporation and host cell proliferation by 20 to 30%, while BKV infection increased cell proliferation in both rapidly dividing and near-confluent cultures. We conclude that CMX001 inhibits BKV replication with a longer-lasting effect than cidofovir at 400× lower levels, with fewer side effects on relevant host cells in vitro.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Lee-Yean Low ◽  
Paul F. Harrison ◽  
Jodee Gould ◽  
David R. Powell ◽  
Jocelyn M. Choo ◽  
...  

ABSTRACTTo obtain an insight into host-pathogen interactions in clostridial myonecrosis, we carried out comparative transcriptome analysis of both the bacterium and the host in a murineClostridium perfringensinfection model, which is the first time that such an investigation has been conducted. Analysis of the host transcriptome from infected muscle tissues indicated that many genes were upregulated compared to the results seen with mock-infected mice. These genes were enriched for host defense pathways, including Toll-like receptor (TLR) and Nod-like receptor (NLR) signaling components. Real-time PCR confirmed that host TLR2 and NLRP3 inflammasome genes were induced in response toC. perfringensinfection. Comparison of the transcriptome ofC. perfringenscells from the infected tissues with that from broth cultures showed that host selective pressure induced a global change inC. perfringensgene expression. A total of 33% (923) ofC. perfringensgenes were differentially regulated, including 10 potential virulence genes that were upregulated relative to their expressionin vitro. These genes encoded putative proteins that may be involved in the synthesis of cell wall-associated macromolecules, in adhesion to host cells, or in protection from host cationic antimicrobial peptides. This report presents the first successful expression profiling of coregulated transcriptomes of bacterial and host genes during a clostridial myonecrosis infection and provides new insights into disease pathogenesis and host-pathogen interactions.IMPORTANCEClostridium perfringensis the causative agent of traumatic clostridial myonecrosis, or gas gangrene. In this study, we carried out transcriptional analysis of both the host and the bacterial pathogen in a mouse myonecrosis infection. The results showed that in comparison to mock-infected control tissues, muscle tissues fromC. perfringens-infected mice had a significantly altered gene expression profile. In particular, the expression of many genes involved in the innate immune system was upregulated. Comparison of the expression profiles ofC. perfringenscells isolated from the infected tissues with those from equivalent broth cultures identified many potential virulence genes that were significantly upregulatedin vivo. These studies have provided a new understanding of the range of factors involved in host-pathogen interactions in a myonecrosis infection.


2021 ◽  
Vol 245 ◽  
pp. 03052
Author(s):  
LiuQing Yang

A COVID-19 outbreak suddenly appeared in Wuhan, China, in December 2019, and then spread around the world quickly. So far, there have been a series of studies on SARS-COV-2 which has been confirmed as the cause of the outbreak. On account of the characteristic of spreading in droplet, SARS-COV-2 could be transmitted from person to person, causing the epidemic to become more and more severe all over the world. For SARS-COV-2, the spike S protein is essential for successfully infecting cells. In fact, most developmental strategies of vaccines are based on the structure of S proteins as well as host cell receptors. There are also vaccines based on the role of RNA molecules of SARS-COV-2 in host cells or the immune response of human body against the virus. This paper summarizes some research results of scholars on SARS-COV-2, aiming to provide people with a clear idea to understand SARS-COV-2, and hoping to make some contributions to the fight against the virus.


Sign in / Sign up

Export Citation Format

Share Document