scholarly journals The complex, bidirectional role of extracellular vesicles in infection

Author(s):  
Joni Renee White ◽  
Priscila Dauros-Singorenko ◽  
Jiwon Hong ◽  
Frédérique Vanholsbeeck ◽  
Anthony Phillips ◽  
...  

Cells from all domains of life release extracellular vesicles (EVs), packages that carry a cargo of molecules that participate in communication, co-ordination of population behaviours, virulence and immune response mechanisms. Mammalian EVs play an increasingly recognised role to fight infection, yet may also be commandeered to disseminate pathogens and enhance infection. EVs released by bacterial pathogens may deliver toxins to host cells, signalling molecules and new DNA to other bacteria, and act as decoys, protecting infecting bacteria from immune killing. In this review, we explore the role of EVs in infection from the perspective of both the pathogen and host, and highlight their importance in the host/pathogen relationship. We highlight proposed strategies for EVs in therapeutics, and call attention to areas where existing knowledge and evidence is lacking.

Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 623 ◽  
Author(s):  
Raquel Bello-Morales ◽  
Inés Ripa ◽  
José Antonio López-Guerrero

Viral spread by both enveloped and non-enveloped viruses may be mediated by extracellular vesicles (EVs), including microvesicles (MVs) and exosomes. These secreted vesicles have been demonstrated to be an efficient mechanism that viruses can use to enter host cells, enhance spread or evade the host immune response. However, the complex interplay between viruses and EVs gives rise to antagonistic biological tasks—to benefit the viruses, enhancing infection and interfering with the immune system or to benefit the host, by mediating anti-viral responses. Exosomes from cells infected with herpes simplex type 1 (HSV-1) may transport viral and host transcripts, proteins and innate immune components. This virus may also use MVs to expand its tropism and evade the host immune response. This review aims to describe the current knowledge about EVs and their participation in viral infection, with a specific focus on the role of exosomes and MVs in herpesvirus infections, particularly that of HSV-1.


2021 ◽  
Vol 22 (13) ◽  
pp. 7099
Author(s):  
Pradeep Kumar Kopparapu ◽  
Meghshree Deshmukh ◽  
Zhicheng Hu ◽  
Majd Mohammad ◽  
Marco Maugeri ◽  
...  

Staphylococcal aureus (S. aureus), a Gram-positive bacteria, is known to cause various infections. Extracellular vesicles (EVs) are a heterogeneous array of membranous structures secreted by cells from all three domains of life, i.e., eukaryotes, bacteria, and archaea. Bacterial EVs are implied to be involved in both bacteria–bacteria and bacteria–host interactions during infections. It is still unclear how S. aureus EVs interact with host cells and induce inflammatory responses. In this study, EVs were isolated from S. aureus and mutant strains deficient in either prelipoprotein lipidation (Δlgt) or major surface proteins (ΔsrtAB). Their immunostimulatory capacities were assessed both in vitro and in vivo. We found that S. aureus EVs induced pro-inflammatory responses both in vitro and in vivo. However, this activity was dependent on lipidated lipoproteins (Lpp), since EVs isolated from the Δlgt showed no stimulation. On the other hand, EVs isolated from the ΔsrtAB mutant showed full immune stimulation, indicating the cell wall anchoring of surface proteins did not play a role in immune stimulation. The immune stimulation of S. aureus EVs was mediated mainly by monocytes/macrophages and was TLR2 dependent. In this study, we demonstrated that not only free Lpp but also EV-imbedded Lpp had high pro-inflammatory activity.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 675
Author(s):  
Samira Elmanfi ◽  
Mustafa Yilmaz ◽  
Wilson W. S. Ong ◽  
Kofi S. Yeboah ◽  
Herman O. Sintim ◽  
...  

Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides—including c-di-GMP, c-di-AMP, and cGAMP—of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms “STING”, “TBK 1”, “IRF3”, and “cGAS”—alone, or together with “periodontitis”. Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.


Microbiology ◽  
2014 ◽  
Vol 160 (9) ◽  
pp. 1821-1831 ◽  
Author(s):  
Viveshree S. Govender ◽  
Saiyur Ramsugit ◽  
Manormoney Pillay

Adhesion to host cells is a precursor to host colonization and evasion of the host immune response. Conversely, it triggers the induction of the immune response, a process vital to the host’s defence against infection. Adhesins are microbial cell surface molecules or structures that mediate the attachment of the microbe to host cells and thus the host–pathogen interaction. They also play a crucial role in bacterial aggregation and biofilm formation. In this review, we discuss the role of adhesins in the pathogenesis of the aetiological agent of tuberculosis, Mycobacterium tuberculosis. We also provide insight into the structure and characteristics of some of the characterized and putative M. tuberculosis adhesins. Finally, we examine the potential of adhesins as targets for the development of tuberculosis control strategies.


Pathogens ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1530
Author(s):  
Alfonso Olaya-Abril ◽  
Rafael Prados-Rosales ◽  
José A. González-Reyes ◽  
Arturo Casadevall ◽  
Liise-anne Pirofski ◽  
...  

Bacterial extracellular vesicles are membranous ultrastructures released from the cell surface. They play important roles in the interaction between the host and the bacteria. In this work, we show how extracellular vesicles produced by four different serotypes of the important human pathogen, Streptococcus pneumoniae, are internalized by murine J774A.1 macrophages via fusion with the membrane of the host cells. We also evaluated the capacity of pneumococcal extracellular vesicles to elicit an immune response by macrophages. Macrophages treated with the vesicles underwent a serotype-dependent transient loss of viability, which was further reverted. The vesicles induced the production of proinflammatory cytokines, which was higher for serotype 1 and serotype 8-derived vesicles. These results demonstrate the biological activity of extracellular vesicles of clinically important pneumococcal serotypes.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Teshager Dubie ◽  
Yasin Mohammed

Cutaneous leishmaniasis (CL) is a major public health problem worldwide and spreads to human via the bite of sand flies during blood meal. Following its inoculation, the promastigotes are immediately taken up by phagocytic cells and these leishmania-infected host cells produce proinflammatory cytokines that activate other immune cells and these infected host cells produce more cytokines and reactive nitrogen and oxygen species for efficient control of leishmania infection. Many experimental studies showed that resistance to infection with leishmania paraites is associated with the production of proinflammatory cytokines and activation of CD4+ Th1 response. On the other hand, vulnerability to this parasitic infection is correlated to production of T helper 2 cytokines that facilitate persistence of parasites and disease progression. In addition, some studies have also indicated that CD8+ T cells play a vital role in immune defense through cytokine production and their cytotoxic activity and excessive production of proinflammatory mediators promote amplified recruitment of cells. This could be correlated with excessive inflammatory reaction and ultimately resulted in tissue destruction and development of immunopathogenesis. Thus, there are contradictions regarding the role of immune responses in protection and immunopathogenesis of CL disease. Therefore, the aim of this paper was to review the role of host immune response in protection and its contribution to disease severity for CL infection. In order to obtain more meaningful data regarding the nature of immune response to leishmania, further in-depth studies focused on immune modulation should be conducted to develop better therapeutic strategies.


2021 ◽  
Author(s):  
Rogéria Cristina Zauli ◽  
Andrey Sladkevicius Vidal ◽  
Talita Vieira Dupin ◽  
Aline Correia Costa de Morais ◽  
Wagner Luiz Batista ◽  
...  

Leishmania spp. release extracellular vesicles (EVs) containing parasite molecules, including several antigens and virulence factors. These EVs can interact with the host cells, such as immune cells, contributing to the parasite–host relationship. Studies have demonstrated that Leishmania-EVs can promote infection in experimental models and modulate the immune response. Although the immunomodulatory effect has been demonstrated, Leishmania-EVs can deliver parasite antigens and therefore have the potential for use as a new diagnostic tool and development of new therapeutic and vaccine approaches. This review aims to bring significant advances in the field of extracellular vesicles and Leishmania, focusing on their role in the cells of the immune system.


2018 ◽  
Vol 62 (2) ◽  
pp. 215-223 ◽  
Author(s):  
Ana-Citlali Gradilla ◽  
Eléanor Simon ◽  
Gustavo Aguilar ◽  
Isabel Guerrero

Signalling from cell-to-cell is fundamental for determining differentiation and patterning. This communication can occur between adjacent and distant cells. Extracellular vesicles (EVs) are membrane-based structures thought to facilitate the long-distance movement of signalling molecules. EVs have recently been found to allow the transport of two major developmental signalling pathways: Hedgehog and Wnt. These signalling molecules undergo crucial post-translational lipid modifications, which anchor them to membranes and impede their free release into the extracellular space. Preparation of these ligands in EVs involves intracellular vesicle sorting in an endocytosis-dependent recycling process before secretion. In the present review, we discuss the most recent advances with regard to EV involvement in developmental signalling at a distance. We focus on the role of the protein complexes involved in EV genesis, and provide a comprehensive perspective of the contribution of these complexes to intracellular vesicle sorting of developmental signals for their extracellular secretion, reception and transduction.


Sign in / Sign up

Export Citation Format

Share Document