scholarly journals Reward boosts reinforcement-based motor learning

2021 ◽  
Author(s):  
Pierre Vassiliadis ◽  
Gerard Derosiere ◽  
Cecile Dubuc ◽  
Aegryan Lete ◽  
Frederic Crevecoeur ◽  
...  

AbstractBesides relying heavily on sensory and reinforcement feedback, motor skill learning may also depend on the level of motivation experienced during training. Yet, how motivation by reward modulates motor learning remains unclear. In 90 healthy subjects, we investigated the net effect of motivation by reward on motor learning while controlling for the sensory and reinforcement feedback received by the participants. Reward improved motor skill learning beyond performance-based reinforcement feedback. Importantly, the beneficial effect of reward involved a specific potentiation of reinforcement-related adjustments in motor commands, which concerned primarily the most relevant motor component for task success and persisted on the following day in the absence of reward. We propose that the long-lasting effects of motivation on motor learning may entail a form of associative learning resulting from the repetitive pairing of the reinforcement feedback and reward during training, a mechanism that may be exploited in future rehabilitation protocols.

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Svenja Espenhahn ◽  
Holly E Rossiter ◽  
Bernadette C M van Wijk ◽  
Nell Redman ◽  
Jane M Rondina ◽  
...  

Abstract Recovery of skilled movement after stroke is assumed to depend on motor learning. However, the capacity for motor learning and factors that influence motor learning after stroke have received little attention. In this study, we first compared motor skill acquisition and retention between well-recovered stroke patients and age- and performance-matched healthy controls. We then tested whether beta oscillations (15–30 Hz) from sensorimotor cortices contribute to predicting training-related motor performance. Eighteen well-recovered chronic stroke survivors (mean age 64 ± 8 years, range: 50–74 years) and 20 age- and sex-matched healthy controls were trained on a continuous tracking task and subsequently retested after initial training (45–60 min and 24 h later). Scalp electroencephalography was recorded during the performance of a simple motor task before each training and retest session. Stroke patients demonstrated capacity for motor skill learning, but it was diminished compared to age- and performance-matched healthy controls. Furthermore, although the properties of beta oscillations prior to training were comparable between stroke patients and healthy controls, stroke patients did show less change in beta measures with motor learning. Lastly, although beta oscillations did not help to predict motor performance immediately after training, contralateral (ipsilesional) sensorimotor cortex post-movement beta rebound measured after training helped predict future motor performance, 24 h after training. This finding suggests that neurophysiological measures such as beta oscillations can help predict response to motor training in chronic stroke patients and may offer novel targets for therapeutic interventions.


1992 ◽  
Vol 12 (1) ◽  
pp. 110-119 ◽  
Author(s):  
Krystyna R. Isaacs ◽  
Brenda J. Anderson ◽  
Adriana A. Alcantara ◽  
James E. Black ◽  
William T. Greenough

This study compared the morphology of cerebellar cortex in adult female rats exposed for 1 month to repetitive exercise, motor learning, or an inactive condition. In the exercise conditions, rats that were run on a treadmill or housed with access to a running wheel had a shorter diffusion distance from blood vessels in the molecular layer of the paramedian lobule when compared to rats housed individually or rats that participated in a motor skill learning task. Rats taught complex motor skills substantially increased the volume of the molecular layer per Purkinje neuron and increased blood vessel number sufficiently to maintain the diffusion distance. These results dissociate angiogenesis associated with increased neuropil volume (as seen in the motor learning group) from angiogenesis associated with increased metabolic demands (as seen in the exercise groups). While the volume fraction of mitochondria did not differ among groups, the mitochondrial volume fraction per Purkinje cell was significantly increased in the motor skill rats. This appears to parallel the previously reported increase in synapses and associated neuropil volume change.


2014 ◽  
Vol 112 (1) ◽  
pp. 156-164 ◽  
Author(s):  
James P. Coxon ◽  
Nicola M. Peat ◽  
Winston D. Byblow

Motor learning requires practice over a period of time and depends on brain plasticity, yet even for relatively simple movements, there are multiple practice strategies that can be used for skill acquisition. We investigated the role of intracortical inhibition in the primary motor cortex (M1) during motor skill learning. Event-related transcranial magnetic stimulation (TMS) was used to assess corticomotor excitability and inhibition thought to involve synaptic and extrasynaptic γ-aminobutyric acid (GABA). Short intracortical inhibition (SICI) was assessed using 1- and 2.5-ms interstimulus intervals (ISIs). Participants learned a novel, sequential pinch-grip task on a computer in either a repetitive or interleaved practice structure. Both practice structures showed equivalent levels of motor performance at the end of acquisition and at retention 1 wk later. There was a novel task-related modulation of 1-ms SICI. Repetitive practice elicited a greater reduction of 1- and 2.5-ms SICI, i.e., disinhibition, between rest and task acquisition, compared with interleaved practice. These novel findings support the use of a repetitive practice structure for motor learning because the associated effects within M1 have relevance for motor rehabilitation.


2005 ◽  
Vol 28 (1) ◽  
pp. 70-71 ◽  
Author(s):  
Luca A. Finelli ◽  
Terrence J. Sejnowski

Learning procedural skills involves improvement in speed and accuracy. Walker proposes two stages of memory consolidation: enhancement, which requires sleep, and stabilization, which does not require sleep. Speed improvement for a motor learning task but not accuracy occurs after sleep-dependent enhancement. We discuss this finding in the context of computational models and underlying sleep mechanisms.


2009 ◽  
Vol 89 (4) ◽  
pp. 370-383 ◽  
Author(s):  
Catherine F Siengsukon ◽  
Lara A Boyd

Sleep following motor skill practice has repeatedly been demonstrated to enhance motor skill learning off-line (continued overnight improvements in motor skill that are not associated with additional physical practice) for young people who are healthy. Mounting evidence suggests that older people who are healthy fail to demonstrate sleep-dependent off-line motor learning. However, little is known regarding the influence of sleep on motor skill enhancement following damage to the brain. Emerging evidence suggests that individuals with brain damage, particularly following stroke, do benefit from sleep to promote off-line motor skill learning. Because rehabilitation following stroke requires learning new, and re-learning old, motor skills, awareness that individuals with stroke benefit from a period of sleep following motor skill practice to enhance skill learning could affect physical therapist practice. The objective of this article is to present the evidence demonstrating sleep-dependent off-line motor learning in young people who are healthy and the variables that may influence this beneficial sleep-dependent skill enhancement. In young people who are healthy, these variables include the stages of memory formation, the type of memory, the type of instruction provided (implicit versus explicit learning), and the task utilized. The neural mechanisms thought to be associated with sleep-dependent off-line motor learning also are considered. Research examining whether older adults who are healthy show the same benefits of sleep as do younger adults is discussed. The data suggest that older adults who are healthy do not benefit from sleep to promote off-line skill enhancement. A possible explanation for the apparent lack of sleep-dependent off-line motor learning by older adults who are healthy is presented. Last, emerging evidence showing that individuals with chronic stroke demonstrate sleep-dependent off-line motor skill learning and some of the possible mechanisms for this effect are considered.


BMJ Open ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. e045841
Author(s):  
David Matthews ◽  
Edith Elgueta Cancino ◽  
Deborah Falla ◽  
Ali Khatibi

IntroductionMotor skill learning is intrinsic to living. Pain demands attention and may disrupt non-pain-related goals such as learning new motor skills. Although rehabilitation approaches have used motor skill learning for individuals in pain, there is uncertainty on the impact of pain on learning motor skills.Methods and analysisThe protocol of this systematic review has been designed and is reported in accordance with criteria set out by the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols guidelines. Web of Science, Scopus, MEDLINE, Embase and CINAHL databases; key journals; and grey literature will be searched up until March 2021, using subject-specific searches. Two independent assessors will oversee searching, screening and extracting of data and assessment of risk of bias. Both behavioural and activity-dependent plasticity outcome measures of motor learning will be synthesised and presented. The quality of evidence will be assessed using the Grading of Recommendations Assessment, Development and Evaluation approach.Ethics and disseminationNo patient data will be collected, and therefore, ethical approval was not required for this review. The results of this review will provide further understanding into the complex effects of pain and may guide clinicians in their use of motor learning strategies for the rehabilitation of individuals in pain. The results of this review will be published in a peer-reviewed journal and presented at scientific conferences.PROSPERO registration numberCRD42020213240.


2020 ◽  
Author(s):  
M Herrojo Ruiz ◽  
T Maudrich ◽  
B Kalloch ◽  
D Sammler ◽  
R Kenville ◽  
...  

AbstractDecision-making is increasingly being recognised to play a role in learning motor skills. Understanding the neural processes regulating motor decision-making is therefore essential to identify mechanisms that contribute to motor skill learning. In decision-making tasks, the frontopolar cortex (FPC) is involved in tracking the reward of different alternative choices, as well as their reliability. Whether this FPC function extends to reward landscapes associated with a continuous movement dimension remains unknown. Here we used anodal transcranial direct current stimulation (tDCS) over the right FPC to investigate its role in reward-based motor learning. Nineteen healthy human participants completed a motor sequence learning task using trial-wise reward feedback to discover a hidden performance goal along a continuous dimension: timing. As a control condition, we modulated contralateral motor cortex (left M1) activity with tDCS, which has been shown to benefit motor skill learning but less consistently reward-based motor learning. Each active tDCS condition was contrasted to sham stimulation. Right FPC-tDCS led to faster learning primarily through a regulation of exploration, without concurrent modulation of motor noise. A Bayesian computational model revealed that following rFPC-tDCS, participants had a higher expectation of reward, consistent with their faster learning. These higher reward estimates were inferred to be less volatile, and thus participants under rFPC-tDCS deemed the mapping between movement and reward to be more stable. Relative to sham, lM1-tDCS did not significantly modulate main behavioral outcomes. The results indicate that brain regions previously linked to decision-making, such as the FPC, are relevant for motor skill learning.


2020 ◽  
Author(s):  
Jasmine L. Mirdamadi ◽  
Hannah J. Block

AbstractBackgroundIt is well established that proprioception (position sense) is important for motor control, yet its role in motor learning and associated plasticity is not well understood. We previously demonstrated that motor skill learning is associated with enhanced proprioception and changes in sensorimotor neurophysiology. However, the neural substrates mediating these effects are unclear.ObjectiveTo determine whether suppressing activity in the cerebellum and somatosensory cortex (S1) affects proprioceptive changes associated with motor skill learning.Methods54 healthy young adults practiced a skill involving visually-guided 2D reaching movements through an irregular-shaped track using a robotic manipulandum with their right hand. Proprioception was measured using a passive two-alternative choice task before and after motor practice. Continuous theta burst stimulation (cTBS), was delivered over S1 or the cerebellum (CB) at the end of training for two consecutive days. We compared group differences (S1, CB, Sham) in proprioception and motor skill, quantified by a speed-accuracy function, measured on a third consecutive day (retention).ResultsAs shown previously, the Sham group demonstrated enhanced proprioceptive sensitivity after training and at retention. The S1 group had impaired proprioceptive function at retention through online changes during practice, whereas the CB group demonstrated offline decrements in proprioceptive function. All groups demonstrated motor skill learning, however, the magnitude of learning differed between the CB and Sham groups, consistent with a role for the cerebellum in motor learning.ConclusionOverall, these findings suggest that the cerebellum and S1 are important for distinct aspects of proprioceptive changes during skill learning.


Author(s):  
Seyyed Mohammadreza Mousavi ◽  
Takehiro Iwatsuki

Expectancies for success and autonomy support have been shown to facilitate motor learning and enhance motor performance. The purpose of the study was to examine whether we replicated (a) enhanced expectancies and autonomy support intervention enhanced motor skill learning in children, and (b) identified the underlying psychological mechanism. Sixty children kicked soccer balls with their dominant leg to a squared area target. Participants were randomly assigned to one of the four groups: enhanced expectancies and autonomy support (EE/AS), enhanced expectancies (EE), autonomy support (AS), or control (CON) groups. Participants learning the skill were or were not provided enhanced expectation instructions by making the task success easier and provided an opportunity to choose one of the three colored balls during their practice. Two days later, they performed retention and transfer tests. Results indicated that the EE/AS group had the highest scores, with main effects of autonomy support being significant and enhanced expectancies being marginally significant for the retention test and significant for the transfer test. The EE/AS group had the highest self-efficacy and perceived choice scores. Therefore, having high expectancies for success and being autonomous were important ingredients for facilitating motor skill learning in children.


Sign in / Sign up

Export Citation Format

Share Document