scholarly journals Pseudomonas aeruginosa isolates defective in function of the LasR quorum sensing regulator are frequent in diverse environmental niches

2021 ◽  
Author(s):  
Marie-Christine Groleau ◽  
Hélène Taillefer ◽  
Antony T. Vincent ◽  
Philippe Constant ◽  
Eric Déziel

ABSTRACTThe saprophyte Pseudomonas aeruginosa is a versatile opportunistic pathogen causing infections in immunocompromised individuals. To facilitate its adaptation to a large variety of niches, this bacterium exploits population density-dependant gene regulation systems called quorum sensing. In P. aeruginosa, three distinct but interrelated quorum sensing systems (las, rhl and pqs) regulate the production of many survival and virulence functions. In prototypical strains, the las system, through its transcriptional regulator LasR, is important for the full activation of the rhl and pqs systems. Still, LasR-deficient isolates have been reported, mostly sampled from the lungs of people with cystic fibrosis, where they are considered selected by the chronic infection environment. In this study, we show that a defect in LasR activity appears to be an actually widespread mechanism of adaptation in this bacterium. Indeed, we found abundant LasR-defective isolates sampled from hydrocarbon-contaminated soils, hospital sink drains, and meat/fish market environments, using an approach based on phenotypic profiling, supported by gene sequencing. Interestingly, several LasR-defective isolates maintain an active rhl system or are deficient in pqs system signaling. The high prevalence of a LasR-defective phenotype among environmental P. aeruginosa isolates questions the role of quorum sensing in niche adaptation.

2006 ◽  
Vol 188 (9) ◽  
pp. 3365-3370 ◽  
Author(s):  
Yannick Lequette ◽  
Joon-Hee Lee ◽  
Fouzia Ledgham ◽  
Andrée Lazdunski ◽  
E. Peter Greenberg

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa possesses two complete acyl-homoserine lactone (acyl-HSL) signaling systems. One system consists of LasI and LasR, which generate a 3-oxododecanoyl-homoserine lactone signal and respond to that signal, respectively. The other system is RhlI and RhlR, which generate butanoyl-homoserine lactone and respond to butanoyl-homoserine lactone, respectively. These quorum-sensing systems control hundreds of genes. There is also an orphan LasR-RhlR homolog, QscR, for which there is no cognate acyl-HSL synthetic enzyme. We previously reported that a qscR mutant is hypervirulent and showed that QscR transiently represses a few quorum-sensing-controlled genes. To better understand the role of QscR in P. aeruginosa gene regulation and to better understand the relationship between QscR, LasR, and RhlR control of gene expression, we used transcription profiling to identify a QscR-dependent regulon. Our analysis revealed that QscR activates some genes and represses others. Some of the repressed genes are not regulated by the LasR-I or RhlR-I systems, while others are. The LasI-generated 3-oxododecanoyl-homoserine lactone serves as a signal molecule for QscR. Thus, QscR appears to be an integral component of the P. aeruginosa quorum-sensing circuitry. QscR uses the LasI-generated acyl-homoserine lactone signal and controls a specific regulon that overlaps with the already overlapping LasR- and RhlR-dependent regulons.


2000 ◽  
Vol 182 (10) ◽  
pp. 2702-2708 ◽  
Author(s):  
Susan L. McKnight ◽  
Barbara H. Iglewski ◽  
Everett C. Pesci

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa uses intercellular signals to control the density-dependent expression of many virulence factors. The las and rhlquorum-sensing systems function, respectively, through the autoinducersN-(3-oxododecanoyl)-l-homoserine lactone andN-butyryl-l-homoserine lactone (C4-HSL), which are known to positively regulate the transcription of the elastase-encoding gene, lasB. Recently, we reported that a second type of intercellular signal is involved in lasB induction. This signal was identified as 2-heptyl-3-hydroxy-4-quinolone and designated thePseudomonas quinolone signal (PQS). PQS was determined to be part of the quorum-sensing hierarchy since its production and bioactivity depended on the las and rhlquorum-sensing systems, respectively. In order to define the role of PQS in the P. aeruginosa quorum-sensing cascade,lacZ gene fusions were used to determine the effect of PQS on the transcription of the quorum-sensing system geneslasR, lasI, rhlR, andrhlI. We found that in P. aeruginosa, PQS caused a major induction of rhlI′-lacZ and had lesser effects on the transcription of lasR′-lacZ andrhlR′-lacZ. We also observed that the transcription of bothrhlI′-lacZ and lasB′-lacZ was cooperatively effected by C4-HSL and PQS. Additionally, we present data indicating that PQS was not produced maximally until cultures reached the late stationary phase of growth. Taken together, our results imply that PQS acts as a link between the las and rhlquorum-sensing systems and that this signal is not involved in sensing cell density.


2000 ◽  
Vol 182 (15) ◽  
pp. 4356-4360 ◽  
Author(s):  
Marvin Whiteley ◽  
Matthew R. Parsek ◽  
E. P. Greenberg

ABSTRACT The LasR-LasI and RhlR-RhlI quorum-sensing systems are global regulators of gene expression in the opportunistic pathogenPseudomonas aeruginosa. Previous studies suggest that the RhlR-RhlI system activates expression of rpoS. We constructed merodiploid strains of P. aeruginosa containing the native rpoS gene and an rpoS-lacZ fusion. Studies of lacZ transcription in these strains indicated that rpoS was not regulated by RhlR-RhlI. We also generated an rpoS null mutant. This rpoS mutant showed elevated levels of rhlI (but not rhlR) transcription, elevated levels of the RhlI-generated acylhomoserine lactone quorum-sensing signal, and elevated levels of RhlR-RhlI-regulated gene transcription. These findings indicate that there is a relationship between RpoS and quorum sensing, but rather than the RhlR-RhlI system influencing the expression ofrpoS, it appears that RpoS regulates rhlI.


2007 ◽  
Vol 189 (13) ◽  
pp. 4827-4836 ◽  
Author(s):  
Kangmin Duan ◽  
Michael G. Surette

ABSTRACT The lasI-lasR and the rhlI-rhlR quorum-sensing systems in Pseudomonas aeruginosa regulate the expression of numerous cellular and secreted virulence factor genes and play important roles in the development of biofilms. The las and rhl systems themselves are known to be directly or indirectly regulated by a number of transcriptional regulators, and consequently, their expression is sensitive to environmental conditions. In this report, the activities of these two quorum-sensing systems have been examined systematically under 46 growth conditions, and the regulation by environmental conditions has been investigated. The relative timing and strength of expression of these two systems varied significantly under different conditions, which contrasts with the notion of a preset hierarchy with these two systems in P. aeruginosa. Depending on the growth conditions, the correlation between each synthase and its cognate transcriptional regulator also varied, suggesting that the transcription of these genes independently allows for further fine tuning of each system. Finally, we observe that the activities of both the lasI-lasR and the rhlI-rhlR quorum-sensing systems were dramatically enhanced in the presence of extracts of sputum samples from cystic fibrosis patients.


2016 ◽  
Vol 12 ◽  
pp. 1428-1433 ◽  
Author(s):  
Bernardas Morkunas ◽  
Balint Gal ◽  
Warren R J D Galloway ◽  
James T Hodgkinson ◽  
Brett M Ibbeson ◽  
...  

Pyocyanin is a small molecule produced by Pseudomonas aeruginosa that plays a crucial role in the pathogenesis of infections by this notorious opportunistic pathogen. The inhibition of pyocyanin production has been identified as an attractive antivirulence strategy for the treatment of P. aeruginosa infections. Herein, we report the discovery of an inhibitor of pyocyanin production in cultures of wild-type P. aeruginosa which is based around a 4-alkylquinolin-2(1H)-one scaffold. To the best of our knowledge, this is the first reported example of pyocyanin inhibition by a compound based around this molecular framework. The compound may therefore be representative of a new structural sub-class of pyocyanin inhibitors, which could potentially be exploited in in a therapeutic context for the development of critically needed new antipseudomonal agents. In this context, the use of wild-type cells in this study is notable, since the data obtained are of direct relevance to native situations. The compound could also be of value in better elucidating the role of pyocyanin in P. aeruginosa infections. Evidence suggests that the active compound reduces the level of pyocyanin production by inhibiting the cell–cell signalling mechanism known as quorum sensing. This could have interesting implications; quorum sensing regulates a range of additional elements associated with the pathogenicity of P. aeruginosa and there is a wide range of other potential applications where the inhibition of quorum sensing is desirable.


2006 ◽  
Vol 188 (2) ◽  
pp. 815-819 ◽  
Author(s):  
Giordano Rampioni ◽  
Iris Bertani ◽  
Elisabetta Zennaro ◽  
Fabio Polticelli ◽  
Vittorio Venturi ◽  
...  

ABSTRACT A mutation in the rsaL gene of Pseudomonas aeruginosa produces dramatically higher amounts of N-acyl homoserine lactone with respect to the wild type, highlighting the key role of this negative regulator in controlling quorum sensing (QS) in this opportunistic pathogen. The DNA binding site of the RsaL protein on the rsaL-lasI bidirectional promoter partially overlaps the binding site of the LasR protein, consistent with the hypothesis that RsaL and LasR could be in binding competition on this promoter. This is the first direct demonstration that RsaL acts as a QS negative regulator by binding to the lasI promoter.


2005 ◽  
Vol 54 (6) ◽  
pp. 515-518 ◽  
Author(s):  
Yoshifumi Imamura ◽  
Katsunori Yanagihara ◽  
Kazunori Tomono ◽  
Hideaki Ohno ◽  
Yasuhito Higashiyama ◽  
...  

2014 ◽  
Vol 21 ◽  
pp. 92
Author(s):  
K. Ganguly ◽  
J.L. Phillips ◽  
M.S. Wren ◽  
P.E. Pardington ◽  
S. Gnanakaran ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 414
Author(s):  
Didem Kart ◽  
Tuba Reçber ◽  
Emirhan Nemutlu ◽  
Meral Sagiroglu

Introduction: Alternative anti-biofilm agents are needed to combat Pseudomonas aeruginosa infections. The mechanisms behind these new agents also need to be revealed at a molecular level. Materials and methods: The anti-biofilm effects of 10 plant-derived compounds on P. aeruginosa biofilms were investigated using minimum biofilm eradication concentration (MBEC) and virulence assays. The effects of ciprofloxacin and compound combinations on P. aeruginosa in mono and triple biofilms were compared. A metabolomic approach and qRT-PCR were applied to the biofilms treated with ciprofloxacin in combination with baicalein, esculin hydrate, curcumin, and cinnamaldehyde at sub-minimal biofilm inhibitory concentration (MBIC) concentrations to highlight the specific metabolic shifts between the biofilms and to determine the quorum sensing gene expressions, respectively. Results: The combinations of ciprofloxacin with curcumin, baicalein, esculetin, and cinnamaldehyde showed more reduced MBICs than ciprofloxacin alone. The quorum sensing genes were downregulated in the presence of curcumin and cinnamaldehyde, while upregulated in the presence of baicalein and esculin hydrate rather than for ciprofloxacin alone. The combinations exhibited different killing effects on P. aeruginosa in mono and triple biofilms without affecting its virulence. The findings of the decreased metabolite levels related to pyrimidine and lipopolysaccharide synthesis and to down-regulated alginate and lasI expressions strongly indicate the role of multifactorial mechanisms for curcumin-mediated P. aeruginosa growth inhibition. Conclusions: The use of curcumin, baicalein, esculetin, and cinnamaldehyde with ciprofloxacin will help fight against P. aeruginosa biofilms. To the best of our knowledge, this is the first study of its kind to define the effect of plant-based compounds as possible anti-biofilm agents with low MBICs for the treatment of P. aeruginosa biofilms through metabolomic pathways.


Sign in / Sign up

Export Citation Format

Share Document