scholarly journals Differential variation of NSCs in root branch orders of Fraxinus mandshurica Rupr. seedlings across different drought intensities and soil substrates

2021 ◽  
Author(s):  
Li Ji ◽  
Yue Liu ◽  
Jun Wang ◽  
Zhimin Lu ◽  
Yuchun Yang ◽  
...  

Non-structural carbohydrates (NSCs) facilitate plants adapt to drought stress, could characterize trees growth and survival ability and buffer against external disturbances. Previous studies have focused on the distribution and dynamics of NSCs among different plant organs under drought conditions. However, discussion about the NSC levels of fine roots in different root branch order were little, especially the relationship between fine root trait variation and NSCs content. The aim of the study is to shed light into the synergistic variation of fine root traits and NSC content in different root branch order under different drought and soil substrate conditions. 2-year-old Fraxinus mandshurica Rupr. potted seedlings were planted in three different soil substrates (humus, loam and sandy-loam soil) and conducted to four drought intensities (CK, mild drought, moderate drought and severe drought) for two months. With the increase of drought intensity, the biomass of fine roots decreased significantly. Under the same drought intensity, seedlings in sandy-loam soil have higher root biomass, and the coefficient of variation of fifth-order roots (37.4%, 44.5% and 53.0% in humus, loam and sandy loam, respectively) is higher than that of lower-order roots. With the increase of drought intensity, the specific root length (SRL) and average diameter (AD) of all five orders increased and decreased, respectively. The fine roots in humus soil had higher soluble sugar content and lower starch content. Also, the soluble sugar and starch content of fine roots showed decreasing and increasing tendency respectively. Soluble sugar and starch explain the highest degree of total variation of fine root traits, that is 32.0% and 32.1% respectively. With ascending root order, the explanation of the variation of root traits by starch decreased (only 6.8% for fifth-order roots). The response of different root branch order fine root morphological traits of F. mandshurica seedlings to resource fluctuations ensures that plants maintain and constructure the root development by an economical way to obtain more resources.

2021 ◽  
Vol 12 ◽  
Author(s):  
Li Ji ◽  
Yue Liu ◽  
Jun Wang ◽  
Zhimin Lu ◽  
Lijie Zhang ◽  
...  

Non-structural carbohydrates (NSCs) facilitate plant adaptation to drought stress, characterize tree growth and survival ability, and buffer against external disturbances. Previous studies have focused on the distribution and dynamics of NSCs among different plant organs under drought conditions. However, discussion about the NSC levels of fine roots in different root branch orders is limited, especially the relationship between fine root trait variation and NSC content. The objective of the study was to shed light on the synergistic variation in fine root traits and NSC content in different root branch orders under different drought and soil substrate conditions. The 2-year-old Fraxinus mandshurica Rupr. potted seedlings were planted in three different soil substrates (humus, loam, and sandy–loam soil) and subjected to four drought intensities (CK, mild drought, moderate drought, and severe drought) for 2 months. With increasing drought intensity, the biomass of fine roots decreased significantly. Under the same drought intensity, seedlings in sandy–loam soil had higher root biomass, and the coefficient of variation of 5th-order roots (37.4, 44.5, and 53% in humus, loam, and sandy–loam soil, respectively) was higher than that of lower-order roots. All branch order roots of seedlings in humus soil had the largest specific root length (SRL) and specific root surface area (SRA), in addition to the lowest diameter. With increasing drought intensity, the SRL and average diameter (AD) of all root branch orders increased and decreased, respectively. The fine roots in humus soil had a higher soluble sugar (SS) content and lower starch (ST) content compared to the loam and sandy–loam soil. Additionally, the SS and ST contents of fine roots showed decreasing and increasing tendencies with increasing drought intensities, respectively. SS and ST explained the highest degree of the total variation in fine root traits, which were 32 and 32.1%, respectively. With increasing root order, the explanation of the variation in root traits by ST decreased (only 6.8% for 5th-order roots). The observed response in terms of morphological traits of different fine root branch orders of F. mandshurica seedlings to resource fluctuations ensures the maintenance of a low cost-benefit ratio in the root system development.


2009 ◽  
Vol 55 (No. 12) ◽  
pp. 556-566 ◽  
Author(s):  
B. Konôpka

Interspecific comparisons of the fine root “behaviour” under stressful situations may answer questions related to resistance to changing environmental conditions in the particular tree species. Our study was focused on Norway spruce (<I>Picea abies</I> [L.] Karst.) and European beech (<I>Fagus sylvatica</I> L.) grown in an acidic soil where acidity was caused by past air pollution in the Kysucké Beskydy Mts., North-Western Slovakia. Between April and October 2006, the following fine root traits were studied: biomass and necromass seasonal dynamics, vertical distribution, production, mortality, fine root turnover and production to mortality ratio. Sequential soil coring was repeatedly implemented in April, June, July, September, and October including the soil layers of 0–5, 5–15, 15–25, and 25–35 cm. Results indicated that spruce had a lower standing stock of fine roots than beech, and fine roots of spruce were more superficially distributed than those of beech. Furthermore, we estimated higher seasonal dynamics and also higher turnover of fine roots in spruce than in beech. The production to mortality ratio was higher in beech than in spruce, which was hypothetically explained as the effect of drought episodes that occurred in July and August. The results suggested that the beech root system could resist a physiological stress better than that of spruce. This conclusion was supported by different vertical distributions of fine roots in spruce and beech stands.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8194 ◽  
Author(s):  
Lu Gong ◽  
Jingjing Zhao

Fine roots are essential for water and nutrient uptake in plants, but little is known about the variation in fine root traits and the underlying mechanisms that drive it. Understanding the responses of fine root function traits to changing environmental conditions and the role of fine root traits as drivers of forest ecosystem processes are critical for informing physiological and ecological theory as well as ecosystem management. We measured morphological and physiological traits of fine roots from six soil layers and three diameter classes in Schrenk’s spruce (Picea shrenkiana) forests of the Tianshan mountains, China. We found significant effects of nitrogen addition on these morphological and physiological traits, which varied by soil layer and root diameter. Specifically, specific root length (SRL) was higher in medium N addition group (N2) than in control group (N0). Specific root area (SRA) was higher in the control group (N0) than fertilized groups (N1, N2 and N3). Root tissue density (RTD) was higher in low N addition group (N1) than in the other group. Root dry matter content had no significant difference among four treatment groups. SRL, SRA, and RTD of fine roots in different diameter classes were all significantly different between high N addition (N3) and the control (N0) groups. The physiological characteristics of fine roots showed that soluble sugar (SS), fine root vitality (FRV), and tissue water content (TWC) in different soil layers were higher in the control group than in the fertilized groups. While soluble protein (SP), malondialdehyde (MDA) and free proline (FP) were lower in the control group (N0) than in the fertilized groups. In addition, SS, FRV, SP, TWC, FP, and MDA in all N addition treatments groups were significantly different from the control group. Fine root morphological traits were closely related to physiological traits, and added nitrogen inputs change these correlations. Our study confirms that nitrogen addition has specific effects on the morphological and physiological traits of fine roots of Schrenk’s spruce, and the effects of N addition vary according to the amount added.


Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 199 ◽  
Author(s):  
Camille E. Defrenne ◽  
M. Luke McCormack ◽  
W. Jean Roach ◽  
Shalom D. Addo-Danso ◽  
Suzanne W. Simard

Variation in resource acquisition strategies enables plants to adapt to different environments and may partly determine their responses to climate change. However, little is known about how belowground plant traits vary across climate and soil gradients. Focusing on interior Douglas-fir (Pseudotsuga menziesii var. glauca) in western Canada, we tested whether fine-root traits relate to the environment at the intraspecific level. We quantified the variation in commonly measured functional root traits (morphological, chemical, and architectural traits) among the first three fine-root orders (i.e., absorptive fine roots) and across biogeographic gradients in climate and soil factors. Moderate but consistent trait-environment linkages occurred across populations of Douglas-fir, despite high levels of within-site variation. Shifts in morphological traits across regions were decoupled from those in chemical traits. Fine roots in colder/drier climates were characterized by a lower tissue density, higher specific area, larger diameter, and lower carbon-to-nitrogen ratio than those in warmer/wetter climates. Our results showed that Douglas-fir fine roots do not rely on adjustments in architectural traits to adapt rooting strategies in different environments. Intraspecific fine-root adjustments at the regional scale do not fit along a single axis of root economic strategy and are concordant with an increase in root acquisitive potential in colder/drier environments.


2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Auksė Burakova ◽  
Eugenija Bakšienė ◽  
Almantas Ražukas

The aim of the study was to evaluate the influence of organic fertilizers on the potato tubers yield and nutrient accumulation. Experiments were carried out at the Vokė Branch of the Lithuanian Research Centre for Agriculture and Forestry in 2016–2018. The experiments were performed in stationary concrete cylindrical 24 lysimeters on sandy loam and loamy sand Haplic Luvisol, with a surface area of 1.75 m2 and a test soil layer of 1.35 cm. Fertilization with three randomized replications on each side of lysimeters were the following: 1) control (no fertilizer); 2) NPK organic fertilizers (Provita, phosphorite powder, potassium magnesia); 3) 40 t ha–1 sapropel; 4) 60 t ha–1 manure. The results of the experiments suggest that 40 t ha–1 sapropel and 60 t ha–1 manure fertilizers increase potato tuber yields in both soils (sandy loam soil and loamy sand soil). Inserted NPK fertilizers produced the highest yield (in 2017 and 2019) of a small fraction of potato tubers. The findings suggest that during the drier period, in 2019, the accumulation of all elements increased about 0.7–7 times in both soils. The starch content in the tubers was dependent mostly on the meteorological conditions.


Dose-Response ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 155932582199850
Author(s):  
Iqbal Hussain ◽  
Kanwal Rehman ◽  
Muhammad Arslan Ashraf ◽  
Rizwan Rasheed ◽  
Javeria Gul ◽  
...  

Pharmaceutical wastes are environmental micro pollutant and potential risk for the ecosystem. Therefore, the present study was planned to find out the effects of different pharmaceutical effluent (PE) regimes on growth, secondary metabolism, and oxidative defense in 2 carrot lines. The seeds of 2 carrot lines (DC-3 and T-29) were spread in plastic pots containing sandy loam soil. The design of experiment was completely randomized with 3 replicates per treatment. At vegetative stage, plants were irrigated with 5 different doses (control), 25%, 50%, 75% and 100%) of PE on every 3-day interval, while control plants were irrigated with canal water. The carrot roots were harvested after 25 days’ application of the treatments to determine various attributes. High concentration of PE caused a substantial decline in growth, beta carotenoids, anthocyanin, total soluble protein, free amino acids, total soluble sugar, phenolic and flavonoid contents and an increase in proline, levels of H2O2 and MDA, activities of antioxidant enzymes such as peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) in both lines. Moreover, PE caused significant reduction in the levels of essential nutrients (K+, Ca2+) and increased in Na+ content. However, T-29 line was found to be more PE tolerant because it had less H2O2, MDA and ascorbic acid contents. Thus, our findings showed that diluted PE (25%) could not be used for irrigation to increase the growth of plants in nutrients deprived environments without using bio filtration and biocarbon sorption technologies for treatments.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 528
Author(s):  
Zana A. Lak ◽  
Hans Sandén ◽  
Mathias Mayer ◽  
Douglas L. Godbold ◽  
Boris Rewald

Belowground competition is an important structuring force in terrestrial plant communities. Uncertainties remain about the plasticity of functional root traits under competition, especially comparing interspecific vs. intraspecific situations. This study addresses the plasticity of fine root traits of competing Acer pseudoplatanus L. and Fagus sylvatica L. seedlings in nutrient-rich soil patches. Seedlings’ roots were grown in a competition chamber experiment in which root growth (biomass), morphological and architectural fine roots traits, and potential activities of four extracellular enzymes were analyzed. Competition chambers with one, two conspecific, or two allospecific roots were established, and fertilized to create a nutrient ‘hotspot’. Interspecific competition significantly reduced fine root growth in Fagus only, while intraspecific competition had no significant effect on the fine root biomass of either species. Competition reduced root nitrogen concentration and specific root respiration of both species. Potential extracellular enzymatic activities of β-glucosidase (BG) and N-acetyl-glucosaminidase (NAG) were lower in ectomycorrhizal Fagus roots competing with Acer. Acer fine roots had greater diameter and tip densities under intraspecific competition. Fagus root traits were generally more plastic than those of Acer, but no differences in trait plasticity were found between competitive situations. Compared to Acer, Fagus roots possessed a greater plasticity of all studied traits but coarse root biomass. However, this high plasticity did not result in directed trait value changes under interspecific competition, but Fagus roots grew less and realized lower N concentrations in comparison to competing Acer roots. The plasticity of root traits of both species was thus found to be highly species- but not competitor-specific. By showing that both con- and allospecific roots had similar effects on target root growth and most trait values, our data sheds light on the paradigm that the intensity of intraspecific competition is greater than those of interspecific competition belowground.


2019 ◽  
Vol 39 (11) ◽  
pp. 1867-1879 ◽  
Author(s):  
Marie J Zwetsloot ◽  
Marc Goebel ◽  
Alex Paya ◽  
Thorsten E E Grams ◽  
Taryn L Bauerle

Abstract Absorptive fine roots are an important driver of soil biogeochemical cycles. Yet, the spatio-temporal dynamics of those roots in the presence of neighboring species remain poorly understood. The aim of this study was to analyze shifts in absorptive fine-root traits in monoculture or mixtures of Fagus sylvatica [L.] and Picea abies [L.] Karst. We hypothesized that root competition would be higher under single-species than mixed-species interactions, leading to changes in (i) root survivorship, diameter and respiration and (ii) spatio-temporal patterns of root growth and death. Using minirhizotron methods, we monitored the timing and location of absorptive fine-root growth and death at an experimental forest in southern Germany from 2011 to 2013. We also measured root respiration in the spring and fall seasons of 2012 and 2013. Our findings show that the absorptive fine roots of F. sylvatica had a 50% higher risk of root mortality and higher respiration rates in the single-species compared to mixed-species zones. These results support our hypothesis that root competition is less intense for F. sylvatica in mixture versus monoculture. We were unable to find confirmation for the same hypothesis for P. abies. To analyze spatio-temporal patterns of absorptive fine-root production and mortality, we used a mixed-effects model considering root depth (space) and seasons (time) simultaneously. This analysis showed that F. sylvatica shifts root production towards shallower soil layers in mixed-species stands, besides significant seasonal fluctuations in root production depths for both species. Ultimately, the impact of neighbor species identity on root traits observed in this study has important implications for where, when and how fast root-facilitated carbon cycling takes place in single-species versus mixed-species forests. In addition, our study highlights the need for inclusion of absorptive fine-root spatio-temporal dynamics when examining belowground plant interactions and biogeochemical cycles.


2009 ◽  
Vol 36 (11) ◽  
pp. 922 ◽  
Author(s):  
Peter J. Gregory ◽  
A. Glyn Bengough ◽  
Dmitri Grinev ◽  
Sonja Schmidt ◽  
W. (Bill) T. B. Thomas ◽  
...  

Reliable techniques for screening large numbers of plants for root traits are still being developed, but include aeroponic, hydroponic and agar plate systems. Coupled with digital cameras and image analysis software, these systems permit the rapid measurement of root numbers, length and diameter in moderate (typically <1000) numbers of plants. Usually such systems are employed with relatively small seedlings, and information is recorded in 2D. Recent developments in X-ray microtomography have facilitated 3D non-invasive measurement of small root systems grown in solid media, allowing angular distributions to be obtained in addition to numbers and length. However, because of the time taken to scan samples, only a small number can be screened (typically <10 per day, not including analysis time of the large spatial datasets generated) and, depending on sample size, limited resolution may mean that fine roots remain unresolved. Although agar plates allow differences between lines and genotypes to be discerned in young seedlings, the rank order may not be the same when the same materials are grown in solid media. For example, root length of dwarfing wheat (Triticum aestivum L.) lines grown on agar plates was increased by ~40% relative to wild-type and semi-dwarfing lines, but in a sandy loam soil under well watered conditions it was decreased by 24–33%. Such differences in ranking suggest that significant soil environment–genotype interactions are occurring. Developments in instruments and software mean that a combination of high-throughput simple screens and more in-depth examination of root–soil interactions is becoming viable.


Sign in / Sign up

Export Citation Format

Share Document