scholarly journals Maternal and zygotic factors sequentially shape the tissue regionalization of chromatin landscapes in early vertebrate embryos

2021 ◽  
Author(s):  
Kitt D. Paraiso ◽  
Ira L. Blitz ◽  
Ken W.Y. Cho

AbstractOne of the first steps in cellular differentiation of vertebrate embryos is the formation of the three germ layers. Maternal pioneer transcription factors (TFs) bind to the regulatory regions of the embryonic genome prior to zygotic genome activation and initiate germ layer specification. While the involvement of maternal TFs in establishing epigenetic marks in whole embryos was addressed previously, how early pluripotent cells acquire spatially restricted epigenetic identity in embryos remain unknown. Here, we report that the H3K4me1 enhancer mark in each germ layer becomes distinct in germ layer specific regulatory regions, forming super-enhancers (SEs), by early gastrula stage. Distinct SEs are established in these germ layers near robustly regulated germ layer identity genes, suggesting that SEs are important for the canalization of development. Establishment of these enhancers requires a sequential function of maternal and zygotic TFs. By knocking down the expression of a critical set of maternal endodermal TFs, an overwhelming majority of the endodermal H3K4me1 marks are lost. Interestingly, this disappearance of endodermal marking coincides with the appearance of ectodermal and mesodermal H3K4me1 marks in the endoderm, suggesting a transformation in the chromatin state of these nuclei towards a more ecto-mesodermal state. De novo motif analysis to identify TFs responsible for the transformation recovers a profile for endodermal maternal TFs as well as their downstream target TFs. We demonstrate the importance of coordinated activities of maternal and zygotic TFs in defining a spatially resolved dynamic process of chromatin state establishment.

2021 ◽  
Vol 118 (46) ◽  
pp. e2104297118
Author(s):  
Sameena Nikhat ◽  
Anurupa D. Yadavalli ◽  
Arpita Prusty ◽  
Priyanka K. Narayan ◽  
Dasaradhi Palakodeti ◽  
...  

The commitment of hematopoietic multipotent progenitors (MPPs) toward a particular lineage involves activation of cell type–specific genes and silencing of genes that promote alternate cell fates. Although the gene expression programs of early–B and early–T lymphocyte development are mutually exclusive, we show that these cell types exhibit significantly correlated microRNA (miRNA) profiles. However, their corresponding miRNA targetomes are distinct and predominated by transcripts associated with natural killer, dendritic cell, and myeloid lineages, suggesting that miRNAs function in a cell-autonomous manner. The combinatorial expression of miRNAs miR-186-5p, miR-128-3p, and miR-330-5p in MPPs significantly attenuates their myeloid differentiation potential due to repression of myeloid-associated transcripts. Depletion of these miRNAs caused a pronounced de-repression of myeloid lineage targets in differentiating early–B and early–T cells, resulting in a mixed-lineage gene expression pattern. De novo motif analysis combined with an assay of promoter activities indicates that B as well as T lineage determinants drive the expression of these miRNAs in lymphoid lineages. Collectively, we present a paradigm that miRNAs are conserved between developing B and T lymphocytes, yet they target distinct sets of promiscuously expressed lineage-inappropriate genes to suppress the alternate cell-fate options. Thus, our studies provide a comprehensive compendium of miRNAs with functional implications for B and T lymphocyte development.


2009 ◽  
Vol 206 (11) ◽  
pp. 2329-2337 ◽  
Author(s):  
Ludovica Bruno ◽  
Luca Mazzarella ◽  
Maarten Hoogenkamp ◽  
Arnulf Hertweck ◽  
Bradley S. Cobb ◽  
...  

Runx proteins are essential for hematopoiesis and play an important role in T cell development by regulating key target genes, such as CD4 and CD8 as well as lymphokine genes, during the specialization of naive CD4 T cells into distinct T helper subsets. In regulatory T (T reg) cells, the signature transcription factor Foxp3 interacts with and modulates the function of several other DNA binding proteins, including Runx family members, at the protein level. We show that Runx proteins also regulate the initiation and the maintenance of Foxp3 gene expression in CD4 T cells. Full-length Runx promoted the de novo expression of Foxp3 during inducible T reg cell differentiation, whereas the isolated dominant-negative Runt DNA binding domain antagonized de novo Foxp3 expression. Foxp3 expression in natural T reg cells remained dependent on Runx proteins and correlated with the binding of Runx/core-binding factor β to regulatory elements within the Foxp3 locus. Our data show that Runx and Foxp3 are components of a feed-forward loop in which Runx proteins contribute to the expression of Foxp3 and cooperate with Foxp3 proteins to regulate the expression of downstream target genes.


Development ◽  
1956 ◽  
Vol 4 (1) ◽  
pp. 1-33
Author(s):  
S. Gopalakrishnan Nair

Although Rathke (1834), Dohrn (1867), van Beneden (1869), and Roule (1889, 1890, 1891, 1894, 1896) have studied the embryology of Isopoda, the first detailed account and the one that is ordinarily quoted in text-books is that of Bobretzsky (1874) on Oniscus murarius. This work is informative in a general way, though the details of segmentation and germ layer formation are not accurate. Bullar's (1878) work on the parasitic isopods was largely influenced by the generalizations of Bobretzsky. Nusbaum (1891a, 1898) and McMurrich (1892, 1895) have contributed considerably to our knowledge of segmentation and post-mandibular growth in isopods but their accounts of the different fates of the germ layers left several problems of embryology unsolved. Goodrich's (1939) studies on Porcellio and Armadillidium were confined mainly to the origin and fate of the endoderm elements. Manton's (1928) paper on the development of Hemimysis serves as a landmark in the history of Crustacean embryology.


2020 ◽  
Vol 295 (16) ◽  
pp. 5449-5460 ◽  
Author(s):  
Linyan Wang ◽  
Qinghuang Tang ◽  
Jue Xu ◽  
Hua Li ◽  
Tianfang Yang ◽  
...  

Haploinsufficiency of Meis homeobox 2 (MEIS2), encoding a transcriptional regulator, is associated with human cleft palate, and Meis2 inactivation leads to abnormal palate development in mice, implicating MEIS2 functions in palate development. However, its functional mechanisms remain unknown. Here we observed widespread MEIS2 expression in the developing palate in mice. Wnt1Cre-mediated Meis2 inactivation in cranial neural crest cells led to a secondary palate cleft. Importantly, about half of the Wnt1Cre;Meis2f/f mice exhibited a submucous cleft, providing a model for studying palatal bone formation and patterning. Consistent with complete absence of palatal bones, the results from integrative analyses of MEIS2 by ChIP sequencing, RNA-Seq, and an assay for transposase-accessible chromatin sequencing identified key osteogenic genes regulated directly by MEIS2, indicating that it plays a fundamental role in palatal osteogenesis. De novo motif analysis uncovered that the MEIS2-bound regions are highly enriched in binding motifs for several key osteogenic transcription factors, particularly short stature homeobox 2 (SHOX2). Comparative ChIP sequencing analyses revealed genome-wide co-occupancy of MEIS2 and SHOX2 in addition to their colocalization in the developing palate and physical interaction, suggesting that SHOX2 and MEIS2 functionally interact. However, although SHOX2 was required for proper palatal bone formation and was a direct downstream target of MEIS2, Shox2 overexpression failed to rescue the palatal bone defects in a Meis2-mutant background. These results, together with the fact that Meis2 expression is associated with high osteogenic potential and required for chromatin accessibility of osteogenic genes, support a vital function of MEIS2 in setting up a ground state for palatal osteogenesis.


2019 ◽  
Vol 21 (12) ◽  
pp. 1518-1531 ◽  
Author(s):  
Jelena Tosic ◽  
Gwang-Jin Kim ◽  
Mihael Pavlovic ◽  
Chiara M. Schröder ◽  
Sophie-Luise Mersiowsky ◽  
...  
Keyword(s):  

2018 ◽  
Vol 46 (11) ◽  
pp. 5547-5560 ◽  
Author(s):  
Kuo-Hsuan Hung ◽  
Yong H Woo ◽  
I-Ying Lin ◽  
Chin-Hsiu Liu ◽  
Li-Chieh Wang ◽  
...  

Abstract T follicular helper (Tfh) cell-derived signals promote activation and proliferation of antigen-primed B cells. It remains unclear whether epigenetic regulation is involved in the B cell responses to Tfh cell-derived signals. Here, we demonstrate that Tfh cell-mimicking signals induce the expression of histone demethylases KDM4A and KDM4C, and the concomitant global down-regulation of their substrates, H3K9me3/me2, in B cells. Depletion of KDM4A and KDM4C potentiates B cell activation and proliferation in response to Tfh cell-derived signals. ChIP-seq and de novo motif analysis reveals NF-κB p65 as a binding partner of KDM4A and KDM4C. Their co-targeting to Wdr5, a MLL complex member promoting H3K4 methylation, up-regulates cell cycle inhibitors Cdkn2c and Cdkn3. Thus, Tfh cell-derived signals trigger KDM4A/KDM4C - WDR5 - Cdkn2c/Cdkn3 cascade in vitro, an epigenetic mechanism regulating proper proliferation of activated B cells. This pathway is dysregulated in B cells from systemic lupus erythematosus patients and may represent a pathological link.


A critical study and demonstration of the distribution of yolk globules and of pigment granules in normal development of the axolotl shows that these cell inclusions can be regarded as infallible evidence of the origin of cells from endo-mesoderm or from ectoderm layers of the embryo respectively. It is demonstrated that ectodermal cells of the neural crest differentiate into the cartilages of the visceral arches, into odontoblasts, and it is more than probable that they differentiate into osteoblasts of dermal bones. It is further demonstrated that the enamel organs of the teeth can be formed from the ectodermal cells of the stomodaeal collar, from the endodermal cells of the gut wall, or from both. The germ-layer theory is examined as regards its theoretical implications in connexion with the homology of structures in the adult and the presumptive organ-forming regions of the early embryo. It is found that there is no invariable correlation between the germ layers and either the presumptive organ-forming regions or the formed structures. It follows that the germ layers are not determinants of differentiation in development, but embryonic structures which resemble one another closely in different forms although they may contain materials differing in origin and in fate. The germ -layer theory in its classical form must therefore be abandoned.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 650-650
Author(s):  
Cailin Collins ◽  
Jingya Wang ◽  
Joel Bronstein ◽  
Jay L. Hess

Abstract Abstract 650 HOXA9 is a homeodomain-containing transcription factor that plays important roles in both development and hematopoiesis. Deregulation of HOXA9 occurs in a variety of acute lymphoid and myeloid leukemias and plays a key role in their pathogenesis. More than 50% of acute myeloid leukemia (AML) cases show up-regulation of HOXA9, which correlates strongly with poor prognosis. Nearly all cases of AML with mixed lineage leukemia (MLL) translocations have increased HOXA9 expression, as well as cases with mutation of the nucleophosmin gene NPM1, overexpression of CDX2, and fusions of NUP98. Despite the crucial role that HOXA9 plays in development, hematopoiesis and leukemia, its transcriptional targets and mechanisms of action are poorly understood. Previously we identified Hoxa9 and Meis1 binding sites in myeloblastic cells, profiled their epigenetic modifications, and identified the target genes regulated by Hoxa9. Hoxa9 and Meis1 co-bind at hundreds of promoter distal, highly evolutionarily conserved sites showing high levels of histone H3K4 monomethylation and CBP/p300 binding characteristic of enhancers. Hoxa9 association at these sites correlates strongly with increases in histone H3K27 acetylation and activation of downstream target genes, including many proleukemic gene loci. De novo motif analysis of Hoxa9 binding sites shows a marked enrichment of motifs for the transcription factors in the C/EBP and ETS families, and C/ebpα and the ETS transcription factor Pu.1 were found to cobind at Hoxa9-regulated enhancers. Both C/ebpα and Pu.1 are known to play critical roles in the establishment of functional enhancers during normal myeloid development and are mutated or otherwise deregulated in various myeloid leukemias. To determine the importance of co-association of Hoxa9, C/ebpα and Pu.1 at myeloid enhancers, we generated cell lines from C/ebpα and Pu.1 conditional knockout mice (kindly provided by Dr. Daniel Tenen, Harvard University) by immortalization with Hoxa9 and Meis1. In addition we transformed bone marrow with a tamoxifen-regulated form of Hoxa9. Strikingly, loss of C/ebpα or Pu.1, or inactivation of Hoxa9, blocks proliferation and leads to myeloid differentiation. ChIP experiments show that both C/ebpα and Pu.1 remain bound to Hoxa9 binding sites in the absence of Hoxa9. After the loss of Pu.1, both Hoxa9 and C/ebpα dissociate from Hoxa9 binding sites with a corresponding decrease in target gene expression. In contrast, loss of C/ebpα does not lead to an immediate decrease in either Hoxa9 or Pu.1 binding, suggesting that C/ebpα may be playing a regulatory as opposed to a scaffolding role at enhancers. Current work focuses on performing ChIP-seq analysis to assess how C/ebpα and Pu.1 affect Hoxa9 and Meis1 binding and epigenetic modifications genome-wide, and in vivo leukemogenesis assays to confirm the requirement of both Pu.1 and C/ebpα in the establishment and maintenance of leukemias with high levels of Hoxa9. Collectively, our findings implicate C/ebpα and Pu.1 as members of a critical transcription factor network required for Hoxa9-mediated transcriptional regulation in leukemia. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Vogel Ciernia A. ◽  
Laufer B.I. ◽  
Dunaway K.W. ◽  
Hwang H. ◽  
Mordaunt C.E. ◽  
...  

AbstractNeurodevelopmental disorders (NDDs) impact 7% to 14% of all children in developed countries and are one of the leading causes of lifelong disability. Epigenetic modifications are poised at the interface between genes and environment and are predicted to reveal insight into the gene networks, cell types, and developmental timing of NDD etiology. Whole-genome bisulfite sequencing was used to examine DNA methylation in 49 human cortex samples from three different NDDs (autism spectrum disorder, Rett syndrome, and Dup15q syndrome) and matched controls. Integration of methylation differences across NDDs with relevant genomic and genetic datasets revealed differentially methylated regions (DMRs) unique to each type of NDD but with shared regulatory functions in neurons and microglia. DMRs were significantly enriched for known NDD genetic risk factors, including both common inherited and rare de novo variants. Weighted region co-methylation network analysis revealed a module related to NDD diagnosis and enriched for microglial regulatory regions. Together, these results demonstrate an epigenomic signature of NDDs in human cortex shared with known genetic and immune etiological risk. Epigenomic insights into cell types and gene regulatory regions will aid in defining therapeutic targets and early biomarkers at the interface of genetic and environmental NDD risk factors.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3783-3783
Author(s):  
Alexia Katsarou ◽  
Nikolaos Trasanidis ◽  
Jaime Alvarez-Benayas ◽  
Foteini Papaleonidopoulou ◽  
Keren Keren ◽  
...  

Overexpression of the transcription factor MAF, as a result of its juxtaposition to the IgH enhancer [MAF-translocated t(14;16)], is a myeloma-initiating event in 3-5% of patients with multiple myeloma (MM) and confers a poor prognosis. MAF is also overexpressed in another 40% of cases, often in co-operation with the oncogene MMSET. The mechanisms by which MAF overexpression impacts on the regulatory genome to generate the MAF-driven oncogenic transcriptome and its direct targets are not known. To address this, we employed a multi-layer -omics approach using primary myeloma plasma cells (PC) as well as myeloma cell lines (MMCL). First, we determined the chromatin accessibility and transcriptome profiles of MAF-translocated myeloma by performing ATAC-seq and RNA-seq, respectively, in purified bone marrow CD138+ PC from two patients with t(14;16) and three healthy donors. We identified 6,640 differentially accessible regions, 87% of which displayed enhanced chromatin accessibility in MAF samples compared to normal PC. Secondary analysis comparing this with ATAC-seq data from a set of 28 other MM samples, including hyperdiploid, MMSET and CCND1-translocated MM, revealed 33% of those regions to be MAF subgroup specific (1,949 regions), with the rest shared between MAF and other cytogenetic groups. Gene annotation and pathway enrichment analysis using GREAT confirmed overrepresentation of the MF myeloma patient signature, as previously identified in microarray datasets. RNA-seq detected significant upregulation of approximately 900 genes in MAF samples compared to normal counterparts, including MAF itself (top 4th hit) as well as its presumed targets (CCND2, ITGB7 and NUAK1). Next, we obtained the MAF cistrome using ChIP-seq in the MAF-translocated MMCL MM1.S and integrated it with the primary PC ATAC-seq data. This revealed that 31% (618/1,949) of the differentially accessible regions in MAF-translocated MM PC are also MAF-bound. Additional overlay with ENCODE ChromHMM epigenome map showed that 47% of MAF binding sites are on active enhancers and 42% on active promoters signifying potential direct regulation of the corresponding genes. Next, we superimposed the accessible and MAF-bound loci on the epigenomic landscapes of normal PC and other B-cell types using their corresponding ChromHMM maps (Blueprint consortium data). Interestingly, 56% (345/618) of the MAF-specific regions were not active in any stage of B cell development. This suggests that aberrant MAF overexpression and chromatin binding in PC is associated with de novo activation of these chromatin regions, over half of which (200/345; 58%) are enhancers; we termed these 'neo-enhancers'. Upon de novo motif analysis of MAF ChIP-seq in MAF-translocated JJN3 and MM1.S MMCL, we confirmed MAF as the first and, interestingly, IRF4 as the second top hit, suggesting a possible MAF-IRF4 functional interaction in myelomagenesis. Indeed, overlay of the accessible MAF-bound loci with IRF4 ChIP-seq data in MM1.S revealed 63% co-occupancy (including 62% of "neo-enhancers"), proposing a novel and extensive co-operative chromatin-based network between the two transcription factors. Final integration of the accessible MAF-bound regions with the paired transcriptomes of primary myeloma PC revealed a set 206 candidate enhancer-gene pairs. Strikingly, we identified two IRF4-cobound "neo-enhancers" linked to overexpression of TLR4 and CCR1, two genes known for their roles in myeloma cell proliferation and migration. We confirmed significant downregulation of both genes upon shRNA-mediated knockdown of MAF in the two MAF-translocated MMCL, MM1.S and JJN3, as well as the lethality of MAF depletion. Further, MAF overexpression in MAF-negative myeloma backgrounds led to transcriptional upregulation of these genes, further validating them as MAF targets. While CRISPR/Cas9i experiments targeting TLR4 are ongoing, preliminary results validated the functional role of the "neo-enhancer" in CCR1 gene expression. In conclusion, we demonstrate for the first time an extensive re-organisation of the PC chromatin conferred by oncogenic MAF in MM; we reveal its extensive co-operation with IRF4 in this process; we validate the directly MAF-regulated genes and functionally characterise neo-enhancers of key MAF-dependent genes that in addition to MAF itself are also critical for myeloma biology. Disclosures Hatjiharissi: Janssen: Honoraria. Caputo:GSK: Research Funding. Karadimitris:GSK: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document