scholarly journals Impaired antigen-specific memory B cell and plasma cell responses including lack of specific IgG upon SARS-CoV-2 BNT162b2 vaccination among Kidney Transplant and Dialysis patients

Author(s):  
Hector Rincon-Arevalo ◽  
Mira Choi ◽  
Ana-Luisa Stefanski ◽  
Fabian Halleck ◽  
Ulrike Weber ◽  
...  

Patients with kidney failure are at increased risk during the COVID-19 pandemic and effective vaccinations are needed. It is not known how efficient mRNA vaccines mount B and plasma cell responses in dialysis patients (DP) or kidney transplant recipients (KTR) compared to healthy controls (HC). We studied humoral and B cell responses of 25 HC, 44 DP and 40 KTR. Markedly impaired anti-BNT162b2 responses were identified among KTR and DP compared to 100% seroconversion in HC. In DP, the response was delayed (3-4 weeks after boost) and reduced with anti-S1 IgG positivity in 31 (70.5%) and anti-S1 IgA in 30 (68.2%) of 44, respectively. In contrast, KTR did not develop IgG response except one patient who had prior unrecognized infection and developed anti-S1 IgG. The majority of antigen-specific B cells (RBD+) were identified in the plasmablast or post-switch memory B cell compartments in HC, whereas these RBD+ B cells were enriched among pre-switch and naive B cells from DP and KTR. Single cell transcriptome and CITE-seq analyses found reduced frequencies of plasmablasts, TCF7+CD27+GZMK+ T cells and proliferating MKI67-expressing lymphocytes among KTR non-responders. Importantly, the frequency and absolute number of antigen-specific circulating plasmablasts in the whole cohort correlated with the Ig response, a characteristic not reported for other vaccinations. In conclusion, this data indicate that lack of T cell help related to immunosuppression results in impaired germinal center differentiation of B and plasma cell memory. There is an urgent need to improve vaccination protocols in patients after kidney transplantation or on chronic dialysis.

2021 ◽  
Vol 6 (60) ◽  
pp. eabj1031
Author(s):  
Hector Rincon-Arevalo ◽  
Mira Choi ◽  
Ana-Luisa Stefanski ◽  
Fabian Halleck ◽  
Ulrike Weber ◽  
...  

Patients with kidney failure are at increased risk for SARS-CoV-2 infection making effective vaccinations a critical need. It is not known how well mRNA vaccines induce B and plasma cell responses in dialysis patients (DP) or kidney transplant recipients (KTR) compared to healthy controls (HC). We studied humoral and B cell responses of 35 HC, 44 DP and 40 KTR. Markedly impaired anti-BNT162b2 responses were identified among KTR and DP compared to HC. In DP, the response was delayed (3-4 weeks after boost) and reduced with anti-S1 IgG and IgA positivity in 70.5% and 68.2%, respectively. In contrast, KTR did not develop IgG responses except one patient who had a prior unrecognized infection and developed anti-S1 IgG. The majority of antigen-specific B cells (RBD+) were identified in the plasmablast or post-switch memory B cell compartments in HC, whereas RBD+ B cells were enriched among pre-switch and naïve B cells from DP and KTR. The frequency and absolute number of antigen-specific circulating plasmablasts in the cohort correlated with the Ig response, a characteristic not reported for other vaccinations. In conclusion, these data indicated that immunosuppression resulted in impaired protective immunity after mRNA vaccination, including Ig induction with corresponding generation of plasmablasts and memory B cells. Thus, there is an urgent need to improve vaccination protocols in patients after kidney transplantation or on chronic dialysis.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Kristian Assing ◽  
Christian Nielsen ◽  
Marianne Jakobsen ◽  
Charlotte B. Andersen ◽  
Kristin Skogstrand ◽  
...  

Abstract Background Germinal center derived memory B cells and plasma cells constitute, in health and during EBV reactivation, the largest functional EBV reservoir. Hence, by reducing germinal center derived formation of memory B cells and plasma cells, EBV loads may be reduced. Animal and in-vitro models have shown that IL-21 can support memory B and plasma cell formation and thereby potentially contribute to EBV persistence. However, IL-21 also displays anti-viral effects, as mice models have shown that CD4+ T cell produced IL-21 is critical for the differentiation, function and survival of anti-viral CD8+ T cells able to contain chronic virus infections. Case presentation We present immunological work-up (flow-cytometry, ELISA and genetics) related to a patient suffering from a condition resembling B cell chronic active EBV infection, albeit with moderately elevated EBV copy numbers. No mutations in genes associated with EBV disease, common variable immunodeficiency or pertaining to the IL-21 signaling pathway (including hypermorphic IL-21 mutations) were found. Increased (> 5-fold increase 7 days post-vaccination) CD4+ T cell produced (p < 0.01) and extracellular IL-21 levels characterized our patient and coexisted with: CD8+ lymphopenia, B lymphopenia, hypogammaglobulinemia, compromised memory B cell differentiation, absent induction of B-cell lymphoma 6 protein (Bcl-6) dependent peripheral follicular helper T cells (pTFH, p = 0.01), reduced frequencies of peripheral CD4+ Bcl-6+ T cells (p = 0.05), compromised plasmablast differentiation (reduced protein vaccine responses (p < 0.001) as well as reduced Treg frequencies. Supporting IL-21 mediated suppression of pTFH formation, pTFH and CD4+ IL-21+ frequencies were strongly inversely correlated, prior to and after vaccination, in the patient and in controls, Spearman’s rho: − 0.86, p < 0.001. Conclusions To the best of our knowledge, this is the first report of elevated CD4+ IL-21+ T cell frequencies in human EBV disease. IL-21 overproduction may, apart from driving T cell mediated anti-EBV responses, disrupt germinal center derived memory B cell and plasma cell formation, and thereby contribute to EBV disease control.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3382-3382
Author(s):  
Peter Allacher ◽  
Christina Hausl ◽  
Aniko Ginta Pordes ◽  
Rafi Uddin Ahmad ◽  
Hartmut J Ehrlich ◽  
...  

Abstract Memory B cells are essential for maintaining long-term antibody responses. They can persist for years even in the absence of antigen and are rapidly re-stimulated to differentiate into antibody-producing plasma cells when they encounter their specific antigen. Previously we demonstrated that ligands for TLR 7 and 9 amplify the differentiation of FVIII-specific memory B cells into anti-FVIII antibody-producing plasma cells at low concentrations of FVIII and prevent the inhibition of memory-B-cell differentiation at high concentrations of FVIII. The modulation of FVIII-specific memory-B-cell responses by agonists for TLR is highly relevant for the design of new immunotherapeutic approaches in patients with FVIII inhibitors because TLR are activated by a range of different viral and bacterial components. Specifically, TLR 7 is triggered by single-stranded RNA derived from viruses and TLR 9 is triggered by bacterial DNA containing unmethylated CpG motifs. We further explored the modulation of FVIII-specific memory-B-cell responses by agonists for TLRs by studying a broad range of concentrations of CpG DNA, a ligand for TLR 9, both in vitro and in vivo using the murine E17 model of hemophilia A. We used CpG-DNA in concentrations ranging from 0.1 to 10,000 ng/ml to study the modulation of FVIII-specific memory-B-cell responses in vitro and verified the specificity of the effects observed by including a blocking agent for TLR 9 and GpC-DNA, a non-stimulating negative control for CpG DNA. Furthermore, we used doses of CpG DNA ranging from 10 to 50,000 ng per dose to study the modulation of FVIII-specific memory-B-cell responses in vivo. E17 hemophilic mice were treated with a single intravenous dose of 200 ng FVIII to stimulate the generation of FVIII-specific memory B cells and were subsequently treated with another dose of FVIII that was given together with CpG DNA. We analyzed titers of anti-FVIII antibodies in the circulation of these mice one week after the second dose of FVIII. Previously we had shown that a single dose of 200 ng FVIII, given intravenously to E17 hemophilic mice, stimulates the formation of FVIII-specific memory B cells but is not sufficient to induce anti-FVIII antibodies that would be detectable in the circulation. Our results demonstrate a biphasic effect of CpG DNA on the re-stimulation of FVIII-specific memory B cells and their differentiation into antibody-producing plasma cells. Both in vitro and in vivo studies show that CpG DNA at high doses inhibits the re-stimulation and differentiation of FVIII-specific memory B cells. However, CpG DNA at low doses amplifies these processes. Amplification and inhibition of memory-B-cell responses are due to specific interactions of CpG DNA with TLR 9. Both effects are blocked by addition of a blocking agent for TLR 9 in vitro. We conclude that triggering of TLR 9 by bacterial DNA has a substantial influence on FVIII-specific memory-B-cell responses. The consequence of TLR 9 triggering can be inhibitory or stimulatory, depending on the actual concentration of the bacterial DNA. Our findings demonstrate the potential modulatory effects of bacterial infections on the regulation of FVIII inhibitor development.


2021 ◽  
Vol 11 ◽  
Author(s):  
Elena Merino Tejero ◽  
Danial Lashgari ◽  
Rodrigo García-Valiente ◽  
Xuefeng Gao ◽  
Fabien Crauste ◽  
...  

Germinal centers play a key role in the adaptive immune system since they are able to produce memory B cells and plasma cells that produce high affinity antibodies for an effective immune protection. The mechanisms underlying cell-fate decisions are not well understood but asymmetric division of antigen, B-cell receptor affinity, interactions between B-cells and T follicular helper cells (triggering CD40 signaling), and regulatory interactions of transcription factors have all been proposed to play a role. In addition, a temporal switch from memory B-cell to plasma cell differentiation during the germinal center reaction has been shown. To investigate if antigen affinity-based Tfh cell help recapitulates the temporal switch we implemented a multiscale model that integrates cellular interactions with a core gene regulatory network comprising BCL6, IRF4, and BLIMP1. Using this model we show that affinity-based CD40 signaling in combination with asymmetric division of B-cells result in switch from memory B-cell to plasma cell generation during the course of the germinal center reaction. We also show that cell fate division is unlikely to be (solely) based on asymmetric division of Ag but that BLIMP1 is a more important factor. Altogether, our model enables to test the influence of molecular modulations of the CD40 signaling pathway on the production of germinal center output cells.


2003 ◽  
Vol 171 (11) ◽  
pp. 5876-5881 ◽  
Author(s):  
Vanitha S. Raman ◽  
Rama S. Akondy ◽  
Satyajit Rath ◽  
Vineeta Bal ◽  
Anna George

2007 ◽  
Vol 15 (2) ◽  
pp. 182-193 ◽  
Author(s):  
Elizabeth A. Clutterbuck ◽  
Sarah Oh ◽  
Mainga Hamaluba ◽  
Sharon Westcar ◽  
Peter C. L. Beverley ◽  
...  

ABSTRACT Glycoconjugate vaccines have dramatically reduced the incidence of encapsulated bacterial diseases in toddlers under 2 years of age, but vaccine-induced antibody levels in this age group wane rapidly. We immunized adults and 12-month-old toddlers with heptavalent pneumococcal conjugate vaccine to determine differences in B-cell and antibody responses. The adults and 12-month-old toddlers received a pneumococcal conjugate vaccine. The toddlers received a second dose at 14 months of age. The frequencies of diphtheria toxoid and serotype 4, 14, and 23F polysaccharide-specific plasma cells and memory B cells were determined by enzyme-linked immunospot assay. The toddlers had no preexisting polysaccharide-specific memory B cells or serum immunoglobulin G (IgG) antibody but had good diphtheria toxoid-specific memory responses. The frequencies of plasma cells and memory B cells increased by day 7 (P < 0.0001) in the adults and the toddlers following a single dose of conjugate, but the polysaccharide responses were significantly lower in the toddlers than in the adults (P = 0.009 to <0.001). IgM dominated the toddler antibody responses, and class switching to the IgG was serotype dependent. A second dose of vaccine enhanced the antibody and memory B-cell responses in the toddlers but not the ex vivo plasma cell responses. Two doses of pneumococcal conjugate vaccine are required in toddlers to generate memory B-cell frequencies and antibody class switching for each pneumococcal polysaccharide equivalent to that seen in adults.


2019 ◽  
Vol 20 (8) ◽  
pp. 1834 ◽  
Author(s):  
Michael E. Lindquist ◽  
Mark D. Hicar

The etiology of Kawasaki disease (KD), the leading cause of acquired heart disease in children, is currently unknown. Epidemiology supports a relationship of KD to an infectious disease. Several pathological mechanisms are being considered, including a superantigen response, direct invasion by an infectious etiology or an autoimmune phenomenon. Treating affected patients with intravenous immunoglobulin is effective at reducing the rates of coronary aneurysms. However, the role of B cells and antibodies in KD pathogenesis remains unclear. Murine models are not clear on the role for B cells and antibodies in pathogenesis. Studies on rare aneurysm specimens reveal plasma cell infiltrates. Antibodies generated from these aneurysmal plasma cell infiltrates showed cross-reaction to intracellular inclusions in the bronchial epithelium of a number of pathologic specimens from children with KD. These antibodies have not defined an etiology. Notably, a number of autoantibody responses have been reported in children with KD. Recent studies show acute B cell responses are similar in children with KD compared to children with infections, lending further support of an infectious disease cause of KD. Here, we will review and discuss the inconsistencies in the literature in relation to B cell responses, specific antibodies, and a potential role for humoral immunity in KD pathogenesis or diagnosis.


Blood ◽  
2006 ◽  
Vol 108 (8) ◽  
pp. 2642-2647 ◽  
Author(s):  
Dominic F. Kelly ◽  
Mathew D. Snape ◽  
Elizabeth A. Clutterbuck ◽  
Sarah Green ◽  
Claire Snowden ◽  
...  

Abstract Neisseria meningitidis is one of the leading causes of bacterial meningitis and septicemia in children. Vaccines containing the purified polysaccharide capsule from the organism, a T cell-independent antigen, have been available for decades but do not appear to provide protection in infancy or immunologic memory as measured by antibody responses. By contrast, T cell-dependent serogroup C protein-polysaccharide conjugate vaccines protect against serogroup C meningococcal disease from infancy onward and prime for immunologic memory. We compared the magnitude and kinetics of plasma cell and memory B-cell responses to a meningococcal plain polysaccharide vaccine and a serogroup C glycoconjugate vaccine in adolescents previously primed with the conjugate vaccine. Plasma cell kinetics were similar for both vaccines, though the magnitude of the response was greater for the glycoconjugate. In contrast to the glycoconjugate vaccine, the plain polysaccharide vaccine did not induce a persistent immunoglobulin G (IgG) memory B-cell response. This is the first study to directly show that serogroup C meningococcal glycoconjugate vaccines induce persistent production of memory B cells and that plain polysaccharide vaccines do not, supporting the use of the conjugate vaccine for sustained population protection. Detection of peripheral blood memory B-cell responses after vaccination may be a useful signature of successful induction of immunologic memory during novel vaccine evaluation.


2021 ◽  
Vol 6 (58) ◽  
pp. eabi6950 ◽  
Author(s):  
Rishi R. Goel ◽  
Sokratis A. Apostolidis ◽  
Mark M. Painter ◽  
Divij Mathew ◽  
Ajinkya Pattekar ◽  
...  

Novel mRNA vaccines for SARS-CoV-2 have been authorized for emergency use. Despite their efficacy in clinical trials, data on mRNA vaccine-induced immune responses are mostly limited to serological analyses. Here, we interrogated antibody and antigen-specific memory B cells over time in 33 SARS-CoV-2 naïve and 11 SARS-CoV-2 recovered subjects. SARS-CoV-2 naïve individuals required both vaccine doses for optimal increases in antibodies, particularly for neutralizing titers against the B.1.351 variant. Memory B cells specific for full-length spike protein and the spike receptor binding domain (RBD) were also efficiently primed by mRNA vaccination and detectable in all SARS-CoV-2 naive subjects after the second vaccine dose, though the memory B cell response declined slightly with age. In SARS-CoV-2 recovered individuals, antibody and memory B cell responses were significantly boosted after the first vaccine dose; however, there was no increase in circulating antibodies, neutralizing titers, or antigen-specific memory B cells after the second dose. This robust boosting after the first vaccine dose strongly correlated with levels of pre-existing memory B cells in recovered individuals, identifying a key role for memory B cells in mounting recall responses to SARS-CoV-2 antigens. Together, our data demonstrated robust serological and cellular priming by mRNA vaccines and revealed distinct responses based on prior SARS-CoV-2 exposure, whereby COVID-19 recovered subjects may only require a single vaccine dose to achieve peak antibody and memory B cell responses. These findings also highlight the utility of defining cellular responses in addition to serologies and may inform SARS-CoV-2 vaccine distribution in a resource-limited setting.


Sign in / Sign up

Export Citation Format

Share Document