scholarly journals Distinct antibody and memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA vaccination

2021 ◽  
Vol 6 (58) ◽  
pp. eabi6950 ◽  
Author(s):  
Rishi R. Goel ◽  
Sokratis A. Apostolidis ◽  
Mark M. Painter ◽  
Divij Mathew ◽  
Ajinkya Pattekar ◽  
...  

Novel mRNA vaccines for SARS-CoV-2 have been authorized for emergency use. Despite their efficacy in clinical trials, data on mRNA vaccine-induced immune responses are mostly limited to serological analyses. Here, we interrogated antibody and antigen-specific memory B cells over time in 33 SARS-CoV-2 naïve and 11 SARS-CoV-2 recovered subjects. SARS-CoV-2 naïve individuals required both vaccine doses for optimal increases in antibodies, particularly for neutralizing titers against the B.1.351 variant. Memory B cells specific for full-length spike protein and the spike receptor binding domain (RBD) were also efficiently primed by mRNA vaccination and detectable in all SARS-CoV-2 naive subjects after the second vaccine dose, though the memory B cell response declined slightly with age. In SARS-CoV-2 recovered individuals, antibody and memory B cell responses were significantly boosted after the first vaccine dose; however, there was no increase in circulating antibodies, neutralizing titers, or antigen-specific memory B cells after the second dose. This robust boosting after the first vaccine dose strongly correlated with levels of pre-existing memory B cells in recovered individuals, identifying a key role for memory B cells in mounting recall responses to SARS-CoV-2 antigens. Together, our data demonstrated robust serological and cellular priming by mRNA vaccines and revealed distinct responses based on prior SARS-CoV-2 exposure, whereby COVID-19 recovered subjects may only require a single vaccine dose to achieve peak antibody and memory B cell responses. These findings also highlight the utility of defining cellular responses in addition to serologies and may inform SARS-CoV-2 vaccine distribution in a resource-limited setting.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3382-3382
Author(s):  
Peter Allacher ◽  
Christina Hausl ◽  
Aniko Ginta Pordes ◽  
Rafi Uddin Ahmad ◽  
Hartmut J Ehrlich ◽  
...  

Abstract Memory B cells are essential for maintaining long-term antibody responses. They can persist for years even in the absence of antigen and are rapidly re-stimulated to differentiate into antibody-producing plasma cells when they encounter their specific antigen. Previously we demonstrated that ligands for TLR 7 and 9 amplify the differentiation of FVIII-specific memory B cells into anti-FVIII antibody-producing plasma cells at low concentrations of FVIII and prevent the inhibition of memory-B-cell differentiation at high concentrations of FVIII. The modulation of FVIII-specific memory-B-cell responses by agonists for TLR is highly relevant for the design of new immunotherapeutic approaches in patients with FVIII inhibitors because TLR are activated by a range of different viral and bacterial components. Specifically, TLR 7 is triggered by single-stranded RNA derived from viruses and TLR 9 is triggered by bacterial DNA containing unmethylated CpG motifs. We further explored the modulation of FVIII-specific memory-B-cell responses by agonists for TLRs by studying a broad range of concentrations of CpG DNA, a ligand for TLR 9, both in vitro and in vivo using the murine E17 model of hemophilia A. We used CpG-DNA in concentrations ranging from 0.1 to 10,000 ng/ml to study the modulation of FVIII-specific memory-B-cell responses in vitro and verified the specificity of the effects observed by including a blocking agent for TLR 9 and GpC-DNA, a non-stimulating negative control for CpG DNA. Furthermore, we used doses of CpG DNA ranging from 10 to 50,000 ng per dose to study the modulation of FVIII-specific memory-B-cell responses in vivo. E17 hemophilic mice were treated with a single intravenous dose of 200 ng FVIII to stimulate the generation of FVIII-specific memory B cells and were subsequently treated with another dose of FVIII that was given together with CpG DNA. We analyzed titers of anti-FVIII antibodies in the circulation of these mice one week after the second dose of FVIII. Previously we had shown that a single dose of 200 ng FVIII, given intravenously to E17 hemophilic mice, stimulates the formation of FVIII-specific memory B cells but is not sufficient to induce anti-FVIII antibodies that would be detectable in the circulation. Our results demonstrate a biphasic effect of CpG DNA on the re-stimulation of FVIII-specific memory B cells and their differentiation into antibody-producing plasma cells. Both in vitro and in vivo studies show that CpG DNA at high doses inhibits the re-stimulation and differentiation of FVIII-specific memory B cells. However, CpG DNA at low doses amplifies these processes. Amplification and inhibition of memory-B-cell responses are due to specific interactions of CpG DNA with TLR 9. Both effects are blocked by addition of a blocking agent for TLR 9 in vitro. We conclude that triggering of TLR 9 by bacterial DNA has a substantial influence on FVIII-specific memory-B-cell responses. The consequence of TLR 9 triggering can be inhibitory or stimulatory, depending on the actual concentration of the bacterial DNA. Our findings demonstrate the potential modulatory effects of bacterial infections on the regulation of FVIII inhibitor development.


2021 ◽  
Vol 6 (2) ◽  
pp. 105-118
Author(s):  
Wei Zhan ◽  
Todd Hatchette ◽  
Fengyun Yue ◽  
Jun Liu ◽  
Haihan Song ◽  
...  

Background: Common variable immunodeficiency (CVID) is a heterogeneous primary immunodeficiency characterized by low serum antibody levels and recurrent infections. The cellular response to immunization in patients with CVID has not been fully investigated. In this study, we aimed to characterize vaccination-induced influenza-specific memory B-cell responses in CVID. Methods: Eleven individuals affected with CVID and 9 unaffected control individuals were immunized with the 2010-2011 non-adjuvanted seasonal influenza vaccine. Blood samples were collected on the day of vaccination and at week 8 and week 16 after vaccination, and PBMCs were immunophenotyped by flow cytometry. Influenza specific serology was determined using hemagglutination inhibition and microneutralization against vaccine antigens. Influenza-specific memory B-cell responses were determined by ELISpot.  Results: Individuals with CVID showed wide variability in the frequency of CD19+ B cells in blood. The CVID group had significantly reduced frequencies of CD19+CD27+ memory B cells. Frequencies of circulating T follicular helper (CD4+CXCR5+) cells were similar between those with CVID and healthy controls. In terms of serology, compared to healthy controls, the CVID group overall showed significantly reduced boosting to vaccine antigens by hemagglutination inhibition and microneutralization assays at 8 weeks compared to controls and failed to maintain responses by 16 weeks compared to controls, resulting in a post-vaccination geometric mean titer (GMT) ≥ 40 to strain A/H1N1 in only 27% at 8 weeks, and 22% at 12 weeks for patients with CVID vs 78% and 75%, respectively for healthy controls. In addition, there was a GMT ≥ 40 to A/H3N2 in only 9% at 8 weeks and 22% at 12 weeks for patients with CVID vs 56% and 50%, respectively for healthy controls. Healthy participants showed significant increases in flu-specific IgM-secreting memory B cells after vaccination, whereas patients with CVID showed non-significant mild increases. Before vaccination, patients with CVID had significantly lower frequencies of background level influenza-specific IgG and IgA memory B cells. Half of the patients with CVID showed an increase in influenza-specific IgG-secreting memory B cells post vaccination, whereas the other half showed none. All control participants exhibited an increase in influenza-specific IgG-secreting B cells. None of the patients with CVID developed influenza-specific IgA memory B-cell response post vaccination, compared to 5/8 in healthy controls. At week 16, the frequency of influenza-specific memory B-cell responses decayed but to non-zero baseline in healthy controls and to zero baseline in patients with CVID.  Conclusions: Together, these data demonstrate that patients with CVID respond heterogeneously, but as a group poorly, to non-adjuvanted influenza vaccine, with a subgroup unable to generate influenza-specific memory B-cell responses. No patient with CVID was able to maintain memory response for prolonged periods. Together, our results suggest a defect in Ig class switching and memory B-cell maintenance in patients with CVID during a de novo vaccine immune response.


2021 ◽  
Author(s):  
Rishi R. Goel ◽  
Sokratis A. Apostolidis ◽  
Mark M. Painter ◽  
Divij Mathew ◽  
Ajinkya Pattekar ◽  
...  

ABSTRACTNovel mRNA vaccines for SARS-CoV2 have been authorized for emergency use and are currently being administered to millions of individuals worldwide. Despite their efficacy in clinical trials, there is limited data on vaccine-induced immune responses in individuals with a prior SARS-CoV2 infection compared to SARS-CoV2 naïve subjects. Moreover, how mRNA vaccines impact the development of antibodies as well as memory B cells in COVID-19 experienced versus COVID-19 naïve subjects remains poorly understood. In this study, we evaluated antibody responses and antigen-specific memory B cell responses over time in 33 SARS-CoV2 naïve and 11 SARS-CoV2 recovered subjects. mRNA vaccination induced significant antibody and memory B cell responses against full-length SARS-CoV2 spike protein and the spike receptor binding domain (RBD). SARS-CoV2 naïve individuals benefitted from both doses of mRNA vaccine with additional increases in antibodies and memory B cells following booster immunization. In contrast, SARS-CoV2 recovered individuals had a significant immune response after the first dose with no increase in circulating antibodies or antigen-specific memory B cells after the second dose. Moreover, the magnitude of the memory B cell response induced by vaccination was lower in older individuals, revealing an age-dependence to mRNA vaccine-induced B cell memory. Side effects also tended to associate with post-boost antibody levels, but not with post-boost memory B cells, suggesting that side effect severity may be a surrogate of short-term antibody responses. The frequency of pre-vaccine antigen-specific memory B cells in SARS-CoV2 recovered individuals strongly correlated with post-vaccine antibody levels, supporting a key role for memory B cells in humoral recall responses to SARS-CoV2. This observation may have relevance for future booster vaccines and for responses to viral variants that partially escape pre-existing antibodies and require new humoral responses to be generated from memory B cells. Finally, post-boost antibody levels were not correlated with post-boost memory responses in SARS-CoV2 naïve individuals, indicating that short-term antibody levels and memory B cells are complementary immunological endpoints that should be examined in tandem when evaluating vaccine response. Together, our data provide evidence of both serological response and immunological memory following mRNA vaccination that is distinct based on prior SARS-CoV2 exposure. These findings may inform vaccine distribution in a resource-limited setting.Abstract Figure


2001 ◽  
Vol 82 (9) ◽  
pp. 2271-2274 ◽  
Author(s):  
Charlotte A. Moser ◽  
Paul A. Offit

We found previously that mice inoculated orally with simian rotavirus strain RRV developed virus-specific memory B cell responses 16 weeks after immunization that were greater than those found 6 weeks after immunization. Memory B cell responses were defined as the quantity of virus-specific IgA detected in small intestinal lamina propria (LP) fragment cultures of immunized mice at various intervals after challenge. Enhanced memory B cell responses correlated with enhanced protection against shedding. In order to understand better the delayed onset of rotavirus-specific memory B cell responses, a method was developed to determine the frequencies of rotavirus-specific memory B cells in gut-associated lymphoid tissues (GALT). We found that protection against rotavirus challenge was determined by the frequency of rotavirus-specific memory B cells in GALT LP.


2021 ◽  
Author(s):  
Leire de Campos-Mata ◽  
Sonia Tejedor Vaquero ◽  
Roser Tachó-Piñot ◽  
Janet Piñero ◽  
Emilie K. Grasset ◽  
...  

SARS-CoV-2 infection induces virus-reactive memory B cells expressing unmutated antibodies, which hints at their emergence from naïve B cells. Yet, the dynamics of virus-specific naïve B cells and their impact on immunity and immunopathology remain unclear. Here, we longitudinally studied moderate to severe COVID-19 patients to dissect SARS-CoV-2-specific B cell responses overtime. We found a broad virus-specific antibody response during acute infection, which evolved into an IgG1-dominated response during convalescence. Acute infection was associated with increased mature B cell progenitors in the circulation and the unexpected expansion of virus-targeting naïve-like B cells that further augmented during convalescence together with virus-specific memory B cells. In addition to a transitory increase in tissue-homing CXCR3+ plasmablasts and extrafollicular memory B cells, most COVID-19 patients showed persistent activation of CD4+ and CD8+ T cells along with transient or long-lasting changes of key innate immune cells. Remarkably, virus-specific antibodies and the frequency of naïve B cells were among the major variables defining distinct immune signatures associated with disease severity and inflammation. Aside from providing new insights into the complexity of the immune response to SARS-CoV-2, our findings indicate that the de novo recruitment of mature B cell precursors into the periphery may be central to the induction of antiviral immunity.


2007 ◽  
Vol 15 (2) ◽  
pp. 182-193 ◽  
Author(s):  
Elizabeth A. Clutterbuck ◽  
Sarah Oh ◽  
Mainga Hamaluba ◽  
Sharon Westcar ◽  
Peter C. L. Beverley ◽  
...  

ABSTRACT Glycoconjugate vaccines have dramatically reduced the incidence of encapsulated bacterial diseases in toddlers under 2 years of age, but vaccine-induced antibody levels in this age group wane rapidly. We immunized adults and 12-month-old toddlers with heptavalent pneumococcal conjugate vaccine to determine differences in B-cell and antibody responses. The adults and 12-month-old toddlers received a pneumococcal conjugate vaccine. The toddlers received a second dose at 14 months of age. The frequencies of diphtheria toxoid and serotype 4, 14, and 23F polysaccharide-specific plasma cells and memory B cells were determined by enzyme-linked immunospot assay. The toddlers had no preexisting polysaccharide-specific memory B cells or serum immunoglobulin G (IgG) antibody but had good diphtheria toxoid-specific memory responses. The frequencies of plasma cells and memory B cells increased by day 7 (P < 0.0001) in the adults and the toddlers following a single dose of conjugate, but the polysaccharide responses were significantly lower in the toddlers than in the adults (P = 0.009 to <0.001). IgM dominated the toddler antibody responses, and class switching to the IgG was serotype dependent. A second dose of vaccine enhanced the antibody and memory B-cell responses in the toddlers but not the ex vivo plasma cell responses. Two doses of pneumococcal conjugate vaccine are required in toddlers to generate memory B-cell frequencies and antibody class switching for each pneumococcal polysaccharide equivalent to that seen in adults.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Piyawan Kochayoo ◽  
Pattarawan Sanguansuttikul ◽  
Pongsakorn Thawornpan ◽  
Kittikorn Wangriatisak ◽  
John H. Adams ◽  
...  

Abstract Background Development of an effective vaccine against blood-stage malaria requires the induction of long-term immune responses. Plasmodium vivax Reticulocyte Binding Protein 1a (PvRBP1a) is a blood-stage parasite antigen which is associated with invasion of red blood cells and induces antibody responses. Thus, PvRBP1a is considered as a target for design of a blood-stage vaccine against vivax malaria. Methods Both cross-sectional and cohort studies were used to explore the development and persistence of long-lived antibody and memory B cell responses to PvRBP1a in individuals who lived in an area of low malaria endemicity. Antibody titers and frequency of memory B cells specific to PvRBP1a were measured during infection and following recovery for up to 12 months. Results IgG antibody responses against PvRBP1a were prevalent during acute vivax malaria, predominantly IgG1 subclass responses. High responders to PvRBP1a had persistent antibody responses for at least 12-month post-infection. Further analysis of high responder found a direct relation between antibody titers and frequency of activated and atypical memory B cells. Furthermore, circulating antibody secreting cells and memory B cells specific to PvRBP1a were generated during infection. The PvRBP1a-specific memory B cells were maintained for up to 3-year post-infection, indicating the ability of PvRBP1a to induce long-term humoral immunity. Conclusion The study revealed an ability of PvRBP1a protein to induce the generation and maintenance of antibody and memory B cell responses. Therefore, PvRBP1a could be considered as a vaccine candidate against the blood-stage of P. vivax.


2009 ◽  
Vol 77 (9) ◽  
pp. 3850-3856 ◽  
Author(s):  
Aaron M. Harris ◽  
M. Saruar Bhuiyan ◽  
Fahima Chowdhury ◽  
Ashraful I. Khan ◽  
Azim Hossain ◽  
...  

ABSTRACT Cholera, caused by Vibrio cholerae, is a noninvasive dehydrating enteric disease with a high mortality rate if untreated. Infection with V. cholerae elicits long-term protection against subsequent disease in countries where the disease is endemic. Although the mechanism of this protective immunity is unknown, it has been hypothesized that a protective mucosal response to V. cholerae infection may be mediated by anamnestic responses of memory B cells in the gut-associated lymphoid tissue. To characterize memory B-cell responses to cholera, we enrolled a cohort of 39 hospitalized patients with culture-confirmed cholera and evaluated their immunologic responses at frequent intervals over the subsequent 1 year. Memory B cells to cholera antigens, including lipopolysaccharide (LPS), and the protein antigens cholera toxin B subunit (CTB) and toxin-coregulated pilus major subunit A (TcpA) were enumerated using a method of polyclonal stimulation of peripheral blood mononuclear cells followed by a standard enzyme-linked immunospot procedure. All patients demonstrated CTB, TcpA, and LPS-specific immunoglobulin G (IgG)and IgA memory responses by day 90. In addition, these memory B-cell responses persisted up to 1 year, substantially longer than other traditional immunologic markers of infection with V. cholerae. While the magnitude of the LPS-specific IgG memory B-cell response waned at 1 year, CTB- and TcpA-specific IgG memory B cells remained significantly elevated at 1 year after infection, suggesting that T-cell help may result in a more durable memory B-cell response to V. cholerae protein antigens. Such memory B cells could mediate anamnestic responses on reexposure to V. cholerae.


2012 ◽  
Vol 19 (6) ◽  
pp. 842-848 ◽  
Author(s):  
Sweta M. Patel ◽  
Mohammad Arif Rahman ◽  
M. Mohasin ◽  
M. Asrafuzzaman Riyadh ◽  
Daniel T. Leung ◽  
...  

ABSTRACTVibrio choleraeO1 causes cholera, a dehydrating diarrheal disease. We have previously shown thatV. cholerae-specific memory B cell responses develop after cholera infection, and we hypothesize that these mediate long-term protective immunity against cholera. We prospectively followed household contacts of cholera patients to determine whether the presence of circulatingV. choleraeO1 antigen-specific memory B cells on enrollment was associated with protection againstV. choleraeinfection over a 30-day period. Two hundred thirty-six household contacts of 122 index patients with cholera were enrolled. The presence of lipopolysaccharide (LPS)-specific IgG memory B cells in peripheral blood on study entry was associated with a 68% decrease in the risk of infection in household contacts (P= 0.032). No protection was associated with cholera toxin B subunit (CtxB)-specific memory B cells or IgA memory B cells specific to LPS. These results suggest that LPS-specific IgG memory B cells may be important in protection against infection withV. choleraeO1.


2020 ◽  
Vol 11 ◽  
Author(s):  
Austin Negron ◽  
Olaf Stüve ◽  
Thomas G. Forsthuber

While the contribution of autoreactive CD4+ T cells to the pathogenesis of Multiple Sclerosis (MS) is widely accepted, the advent of B cell-depleting monoclonal antibody (mAb) therapies has shed new light on the complex cellular mechanisms underlying MS pathogenesis. Evidence supports the involvement of B cells in both antibody-dependent and -independent capacities. T cell-dependent B cell responses originate and take shape in germinal centers (GCs), specialized microenvironments that regulate B cell activation and subsequent differentiation into antibody-secreting cells (ASCs) or memory B cells, a process for which CD4+ T cells, namely follicular T helper (TFH) cells, are indispensable. ASCs carry out their effector function primarily via secreted Ig but also through the secretion of both pro- and anti-inflammatory cytokines. Memory B cells, in addition to being capable of rapidly differentiating into ASCs, can function as potent antigen-presenting cells (APCs) to cognate memory CD4+ T cells. Aberrant B cell responses are prevented, at least in part, by follicular regulatory T (TFR) cells, which are key suppressors of GC-derived autoreactive B cell responses through the expression of inhibitory receptors and cytokines, such as CTLA4 and IL-10, respectively. Therefore, GCs represent a critical site of peripheral B cell tolerance, and their dysregulation has been implicated in the pathogenesis of several autoimmune diseases. In MS patients, the presence of GC-like leptomeningeal ectopic lymphoid follicles (eLFs) has prompted their investigation as potential sources of pathogenic B and T cell responses. This hypothesis is supported by elevated levels of CXCL13 and circulating TFH cells in the cerebrospinal fluid (CSF) of MS patients, both of which are required to initiate and maintain GC reactions. Additionally, eLFs in post-mortem MS patient samples are notably devoid of TFR cells. The ability of GCs to generate and perpetuate, but also regulate autoreactive B and T cell responses driving MS pathology makes them an attractive target for therapeutic intervention. In this review, we will summarize the evidence from both humans and animal models supporting B cells as drivers of MS, the role of GC-like eLFs in the pathogenesis of MS, and mechanisms controlling GC-derived autoreactive B cell responses in MS.


Sign in / Sign up

Export Citation Format

Share Document