scholarly journals Rapid induction of antigen-specific CD4+ T cells guides coordinated humoral and cellular immune responses to SARS-CoV-2 mRNA vaccination

2021 ◽  
Author(s):  
Mark M. Painter ◽  
Divij Mathew ◽  
Rishi R. Goel ◽  
Sokratis A. Apostolidis ◽  
Ajinkya Pattekar ◽  
...  

SummaryThe SARS-CoV-2 mRNA vaccines have shown remarkable clinical efficacy, but questions remain about the nature and kinetics of T cell priming. We performed longitudinal antigen-specific T cell analyses in healthy individuals following mRNA vaccination. Vaccination induced rapid near-maximal antigen-specific CD4+ T cell responses in all subjects after the first vaccine dose. CD8+ T cell responses developed gradually after the first and second dose and were variable. Vaccine-induced T cells had central memory characteristics and included both Tfh and Th1 subsets, similar to natural infection. Th1 and Tfh responses following the first dose predicted post-boost CD8+ T cell and neutralizing antibody levels, respectively. Integrated analysis of 26 antigen-specific T cell and humoral responses revealed coordinated features of the immune response to vaccination. Lastly, whereas booster vaccination improved CD4+ and CD8+ T cell responses in SARS-CoV-2 naïve subjects, the second vaccine dose had little effect on T cell responses in SARS-CoV-2 recovered individuals. Thus, longitudinal analysis revealed robust T cell responses to mRNA vaccination and highlighted early induction of antigen-specific CD4+ T cells.Graphical Abstract

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1490
Author(s):  
Victoria Matyushenko ◽  
Irina Isakova-Sivak ◽  
Igor Kudryavtsev ◽  
Arina Goshina ◽  
Anna Chistyakova ◽  
...  

Background: New coronavirus SARS-CoV-2, a causative agent of the COVID-19 pandemic, has been circulating among humans since November 2019. Multiple studies have assessed the qualitative and quantitative characteristics of virus-specific immunity in COVID-19 convalescents, however, some aspects of the development of memory T-cell responses after natural SARS-CoV-2 infection remain uncovered. Methods: In most of published studies T-cell immunity to the new coronavirus is assessed using peptides corresponding to SARS-CoV-1 or SARS-CoV-2 T-cell epitopes, or with peptide pools covering various parts of the viral proteins. Here, we determined the level of CD4+ and CD8+ memory T-cell responses in COVID-19 convalescents by stimulating PBMCs collected 1 to 6 months after recovery with sucrose gradient-purified live SARS-CoV-2. IFNγ production by the central and effector memory helper and cytotoxic T cells was assessed by intracellular cytokine staining assay and flow cytometry. Results: Stimulation of PBMCs with live SARS-CoV-2 revealed IFNγ-producing T-helper effector memory cells with CD4+CD45RA−CCR7− phenotype, which persisted in circulation for up to 6 month after COVID-19. In contrast, SARS-CoV-2-specific IFNγ-secreting cytotoxic effector memory T cells were found at significant levels only shortly after the disease, but rapidly decreased over time. Conclusion: The stimulation of immune cells with live SARS-CoV-2 revealed a rapid decline in the pool of effector memory CD8+, but not CD4+, T cells after recovery from COVID-19. These data provide additional information on the development and persistence of cellular immune responses after natural infection, and can inform further development of T cell-based SARS-CoV-2 vaccines.


2021 ◽  
Author(s):  
Suhas Sureshchandra ◽  
Sloan A. Lewis ◽  
Brianna Doratt ◽  
Allen Jankeel ◽  
Izabela Ibraim ◽  
...  

mRNA based vaccines for SARS-CoV-2 have shown exceptional clinical efficacy providing robust protection against severe disease. However, our understanding of transcriptional and repertoire changes following full vaccination remains incomplete. We used single-cell RNA sequencing and functional assays to compare humoral and cellular responses to two doses of mRNA vaccine with responses observed in convalescent individuals with asymptomatic disease. Our analyses revealed enrichment of spike-specific B cells, activated CD4 T cells, and robust antigen-specific polyfunctional CD4 T cell responses in all vaccinees. On the other hand, CD8 T cell responses were both weak and variable. Interestingly, clonally expanded CD8 T cells were observed in every vaccinee, as observed following natural infection. TCR gene usage, however, was variable, reflecting the diversity of repertoires and MHC polymorphism in the human population. Natural infection induced expansion of larger CD8 T cell clones occupied distinct clusters, likely due to the recognition of a broader set of viral epitopes presented by the virus not seen in the mRNA vaccine. Our study highlights a coordinated adaptive immune response where early CD4 T cell responses facilitate the development of the B cell response and substantial expansion of effector CD8 T cells, together capable of contributing to future recall responses.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 126
Author(s):  
Lilin Lai ◽  
Nadine Rouphael ◽  
Yongxian Xu ◽  
Amy C. Sherman ◽  
Srilatha Edupuganti ◽  
...  

The cellular immune responses elicited by an investigational vaccine against an emergent variant of influenza (H3N2v) are not fully understood. Twenty-five subjects, enrolled in an investigational influenza A/H3N2v vaccine study, who received two doses of vaccine 21 days apart, were included in a sub-study of cellular immune responses. H3N2v-specific plasmablasts were determined by ELISpot 8 days after each vaccine dose and H3N2v specific CD4+ T cells were quantified by intracellular cytokine and CD154 (CD40 ligand) staining before vaccination, 8 and 21 days after each vaccine dose. Results: 95% (19/20) and 96% (24/25) subjects had pre-existing H3N2v specific memory B, and T cell responses, respectively. Plasmablast responses at Day 8 after the first vaccine administration were detected against contemporary H3N2 strains and correlated with hemagglutination inhibition HAI (IgG: p = 0.018; IgA: p < 0.001) and Neut (IgG: p = 0.038; IgA: p = 0.021) titers and with memory B cell frequency at baseline (IgA: r = 0.76, p < 0.001; IgG: r = 0.74, p = 0.0001). The CD4+ T cells at Days 8 and 21 expanded after prime vaccination and this expansion correlated strongly with early post-vaccination HAI and Neut titers (p ≤ 0.002). In an adult population, the rapid serological response observed after initial H3N2v vaccination correlates with post-vaccination plasmablasts and CD4+ T cell responses.


2015 ◽  
Vol 90 (5) ◽  
pp. 2208-2220 ◽  
Author(s):  
Srinika Ranasinghe ◽  
Damien Z. Soghoian ◽  
Madelene Lindqvist ◽  
Musie Ghebremichael ◽  
Faith Donaghey ◽  
...  

ABSTRACTAntigen-specific CD4+T helper cell responses have long been recognized to be a critical component of effective vaccine immunity. CD4+T cells are necessary to generate and maintain humoral immune responses by providing help to antigen-specific B cells for the production of antibodies. In HIV infection, CD4+T cells are thought to be necessary for the induction of Env-specific broadly neutralizing antibodies. However, few studies have investigated the role of HIV-specific CD4+T cells in association with HIV neutralizing antibody activity in vaccination or natural infection settings. Here, we conducted a comprehensive analysis of HIV-specific CD4+T cell responses in a cohort of 34 untreated HIV-infected controllers matched for viral load, with and without neutralizing antibody breadth to a panel of viral strains. Our results show that the breadth and magnitude of Gag-specific CD4+T cell responses were significantly higher in individuals with neutralizing antibodies than in those without neutralizing antibodies. The breadth of Gag-specific CD4+T cell responses was positively correlated with the breadth of neutralizing antibody activity. Furthermore, the breadth and magnitude of gp41-specific, but not gp120-specific, CD4+T cell responses were significantly elevated in individuals with neutralizing antibodies. Together, these data suggest that robust Gag-specific CD4+T cells and, to a lesser extent, gp41-specific CD4+T cells may provide important intermolecular help to Env-specific B cells that promote the generation or maintenance of Env-specific neutralizing antibodies.IMPORTANCEOne of the earliest discoveries related to CD4+T cell function was their provision of help to B cells in the development of antibody responses. Yet little is known about the role of CD4+T helper responses in the setting of HIV infection, and no studies to date have evaluated the impact of HIV-specific CD4+T cells on the generation of antibodies that can neutralize multiple different strains of HIV. Here, we addressed this question by analyzing HIV-specific CD4+T cell responses in untreated HIV-infected persons with and without neutralizing antibodies. Our results indicate that HIV-infected persons with neutralizing antibodies have significantly more robust CD4+T cell responses targeting Gag and gp41 proteins than individuals who lack neutralizing antibodies. These associations suggest that Gag- and gp41-specific CD4+T cell responses may provide robust help to B cells for the generation or maintenance of neutralizing antibodies in natural HIV-infection.


2005 ◽  
Vol 79 (10) ◽  
pp. 5988-5995 ◽  
Author(s):  
Rahnuma Wahid ◽  
Martin J. Cannon ◽  
Marie Chow

ABSTRACT The presence of poliovirus (PV)-specific CD4+ T cells in individuals vaccinated against polio has been shown, but CD8+ T-cell responses have not been described. Here, we functionally characterize the CD4+ T-cell response and show for the first time that dendritic cells and macrophages can stimulate PV-specific CD8+ T-cell responses in vitro from vaccinees. Both CD4+ T and CD8+ T cells secrete gamma interferon in response to PV antigens and are cytotoxic via the perforin/granzyme B-mediated pathway. Furthermore, the T cells also recognize and kill Sabin 1 vaccine-infected targets. The macrophage-stimulated CD4+ T and CD8+ T cells most likely represent memory T cells that persist for long periods in vaccinated individuals. Thus, immunity to PV vaccination involves not only an effective neutralizing antibody titer but also long-term CD4+ and CD8+ cytotoxic T-cell responses.


2021 ◽  
Author(s):  
Donal T. Skelly ◽  
Adam C. Harding ◽  
Javier Gilbert-Jaramillo ◽  
Michael L. Knight ◽  
Stephanie Longet ◽  
...  

Abstract Both natural infection with SARS-CoV-2 and immunization with vaccines induce protective immunity. However, the extent to which such immune responses protect against emerging variants is of increasing importance. Such variants of concern (VOC) include isolates of lineage B.1.1.7, first identified in the UK, and B.1.351, first identified in South Africa. Our data confirm that VOC, particularly those with substitutions at residues 484 and 417, escape neutralization by antibodies directed to the ACE2-binding Class 1 and the adjacent Class 2 epitopes but are susceptible to neutralization by the generally less potent antibodies directed to Class 3 and 4 epitopes on the flanks of the receptor-binding domain. To address the potential threat posed by VOC, we sampled a SARS-CoV-2 uninfected UK cohort recently vaccinated with BNT162b2 (Pfizer-BioNTech, two doses delivered 18-28 days apart), alongside a cohort sampled in the early convalescent stages after natural infection in the first wave of the pandemic in Spring 2020. We tested antibody and T cell responses against a reference isolate of the original circulating lineage, B, and the impact of sequence variation in the B.1.1.7 and B.1.351 VOC. Neutralization of the VOC compared to B isolate was reduced, and this was most evident for the B.1.351 isolate. This reduction in antibody neutralization was less marked in post-boost vaccine-induced responses compared to naturally induced immune responses and could be largely explained by the potency of the homotypic antibody response. After a single vaccination, which induced only modestly neutralizing homotypic antibody titres, neutralization against the VOC was completely abrogated in the majority of vaccinees. Importantly, high magnitude T cell responses were generated after two vaccine doses, with the majority of the T cell response directed against epitopes that are conserved between the prototype isolate B and the VOC. These data indicate that VOC may evade protective neutralizing responses induced by prior infection, and to a lesser extent by immunization, particularly after a single vaccine dose, but the impact of the VOC on T cell responses appears less marked. The results emphasize the need to generate high potency immune responses through vaccination in order to provide protection against these and other emergent variants.


2021 ◽  
Vol 17 (7) ◽  
pp. e1009668
Author(s):  
Takushi Nomura ◽  
Hiroyuki Yamamoto ◽  
Masako Nishizawa ◽  
Trang Thi Thu Hau ◽  
Shigeyoshi Harada ◽  
...  

SARS-CoV-2 infection presents clinical manifestations ranging from asymptomatic to fatal respiratory failure. Despite the induction of functional SARS-CoV-2-specific CD8+ T-cell responses in convalescent individuals, the role of virus-specific CD8+ T-cell responses in the control of SARS-CoV-2 replication remains unknown. In the present study, we show that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells in cynomolgus macaques. Eight macaques were intranasally inoculated with 105 or 106 TCID50 of SARS-CoV-2, and three of the eight macaques were treated with a monoclonal anti-CD8 antibody on days 5 and 7 post-infection. In these three macaques, CD8+ T cells were undetectable on day 7 and thereafter, while virus-specific CD8+ T-cell responses were induced in the remaining five untreated animals. Viral RNA was detected in nasopharyngeal swabs for 10–17 days post-infection in all macaques, and the kinetics of viral RNA levels in pharyngeal swabs and plasma neutralizing antibody titers were comparable between the anti-CD8 antibody treated and untreated animals. SARS-CoV-2 RNA was detected in the pharyngeal mucosa and/or retropharyngeal lymph node obtained at necropsy on day 21 in two of the untreated group but undetectable in all macaques treated with anti-CD8 antibody. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but our results indicate possible containment of subacute viral replication in the absence of CD8+ T cells, implying that CD8+ T-cell dysfunction may not solely lead to viral control failure.


2012 ◽  
Vol 87 (3) ◽  
pp. 1373-1384 ◽  
Author(s):  
Pablo Penaloza-MacMaster ◽  
Nicholas M. Provine ◽  
Joshua Ra ◽  
Erica N. Borducchi ◽  
Anna McNally ◽  
...  

ABSTRACTThe failure of the adenovirus serotype 5 (Ad5) vector-based human immunodeficiency virus type 1 (HIV-1) vaccine in the STEP study has led to the development of adenovirus vectors derived from alternative serotypes, such as Ad26, Ad35, and Ad48. We have recently demonstrated that vaccines using alternative-serotype Ad vectors confer partial protection against stringent simian immunodeficiency virus (SIV) challenges in rhesus monkeys. However, phenotypic differences between the T cell responses elicited by Ad5 and those of alternative-serotype Ad vectors remain unexplored. Here, we report the magnitude, phenotype, functionality, and recall capacity of memory T cell responses elicited in mice by Ad5, Ad26, Ad35, and Ad48 vectors expressing lymphocytic choriomeningitis virus (LCMV) glycoprotein (GP). Our data demonstrate that memory T cells elicited by Ad5 vectors were high in magnitude but exhibited functional exhaustion and decreased anamnestic potential following secondary antigen challenge compared to Ad26, Ad35, and Ad48 vectors. These data suggest that vaccination with alternative-serotype Ad vectors offers substantial immunological advantages over Ad5 vectors, in addition to circumventing high baseline Ad5-specific neutralizing antibody titers.


2016 ◽  
Vol 91 (5) ◽  
Author(s):  
Michael A. Angelo ◽  
Alba Grifoni ◽  
Patrick H. O'Rourke ◽  
John Sidney ◽  
Sinu Paul ◽  
...  

ABSTRACT Dengue virus (DENV) is responsible for growing numbers of infections worldwide and has proven to be a significant challenge for vaccine development. We previously demonstrated that CD8+ T cell responses elicited by a dengue live attenuated virus (DLAV) vaccine resemble those observed after natural infection. In this study, we screened peripheral blood mononuclear cells (PBMCs) from donors vaccinated with a tetravalent DLAV vaccine (TV005) with pools of dengue virus-derived predicted major histocompatibility complex (MHC) class II binding peptides. The definition of CD4+ T cell responses after live vaccination is important because CD4+ T cells are known contributors to host immunity, including cytokine production, help for CD8+ T and B cells, and direct cytotoxicity against infected cells. While responses to all antigens were observed, DENV-specific CD4+ T cells were focused predominantly on the capsid and nonstructural NS3 and NS5 antigens. Importantly, CD4+ T cell responses in vaccinees were similar in magnitude and breadth to those after natural infection, recognized the same antigen hierarchy, and had similar profiles of HLA restriction. We conclude that TV005 vaccination has the capacity to elicit CD4+ cell responses closely mirroring those observed in a population associated with natural immunity. IMPORTANCE The development of effective vaccination strategies against dengue virus infection is of high global public health interest. Here we study the CD4 T cell responses elicited by a tetravalent live attenuated dengue vaccine and show that they resemble responses seen in humans naturally exposed to dengue virus. This is an important issue, since it is likely that optimal immunity induced by a vaccine requires induction of CD4+ responses against the same antigens as those recognized as dominant in natural infection. Detailed knowledge of the T cell response may further contribute to the identification of robust correlates of protection against dengue virus.


2021 ◽  
Author(s):  
Aljawharah Alrubayyi ◽  
Ester Gea-Mallorquí ◽  
Emma Touizer ◽  
Dan Hameiri-Bowen ◽  
Jakub Kopycinski ◽  
...  

AbstractThere is an urgent need to understand the nature of immune responses generated against SARS-CoV-2, to better inform risk-mitigation strategies for people living with HIV (PLWH). Although not all PLWH are considered immunosuppressed, residual cellular immune deficiency and ongoing inflammation could influence COVID-19 disease severity, the evolution and durability of protective memory responses. Here, we performed an integrated analysis, characterizing the nature, breadth and magnitude of SARS-CoV-2-specific immune responses in PLWH, controlled on ART, and HIV negative subjects. Both groups were in the convalescent phase of predominately mild COVID-19 disease. The majority of PLWH mounted SARS-CoV-2 Spike- and Nucleoprotein-specific antibodies with neutralizing activity and SARS-CoV-2-specific T cell responses, as measured by ELISpot, at levels comparable to HIV negative subjects. T cell responses against Spike, Membrane and Nucleocapsid were the most prominent, with SARS-CoV-2-specific CD4 T cells outnumbering CD8 T cells. Notably, the overall magnitude of SARS-CoV-2-specific T cell responses related to the size of the naive CD4 T cell pool and the CD4:CD8 ratio in PLWH, in whom disparate antibody and T cell responses were observed. Both humoral and cellular responses to SARS-CoV-2 were detected at 5-7 months post-infection, providing evidence of medium-term durability of responses irrespective of HIV serostatus. Incomplete immune reconstitution on ART and a low CD4:CD8 ratio could, however, hamper the development of immunity to SARS-CoV-2 and serve as a useful tool for risk stratification of PLWH. These findings have implications for the individual management and potential effectiveness of vaccination against SARS-CoV-2 in PLWH.One Sentence SummaryAdaptive immune responses to SARS-CoV-2 in the setting of HIV infection


Sign in / Sign up

Export Citation Format

Share Document