scholarly journals Sex-specific multi-level 3D genome dynamics in the mouse brain

2021 ◽  
Author(s):  
Devin Rocks ◽  
Mamta Shukla ◽  
Silvia C. Finnemann ◽  
Achyuth Kalluchi ◽  
M. Jordan Rowley ◽  
...  

The female mammalian brain exhibits sex-hormone-driven plasticity during the reproductive period. Evidence implicates chromatin dynamics in gene regulation underlying this plasticity. However, whether ovarian hormones impact higher-order chromatin organization in post-mitotic neurons in vivo is unknown. Here, we mapped 3D genome of ventral hippocampal neurons across the estrous cycle and by sex in mice. In females, we found cycle-driven dynamism in 3D chromatin organization, including in estrogen-response-elements-enriched X-chromosome compartments, autosomal CTCF loops, and enhancer-promoter interactions. With rising estrogen levels, the female 3D genome becomes more similar to the male genome. Cyclical enhancer-promoter interactions are partially associated with gene expression and enriched for brain disorder-relevant genes. Our study reveals unique 3D genome dynamics in the female brain relevant to female-specific gene regulation, neuroplasticity, and disease risk.

2021 ◽  
Vol 49 (7) ◽  
pp. 3856-3875
Author(s):  
Marina Kulik ◽  
Melissa Bothe ◽  
Gözde Kibar ◽  
Alisa Fuchs ◽  
Stefanie Schöne ◽  
...  

Abstract The glucocorticoid (GR) and androgen (AR) receptors execute unique functions in vivo, yet have nearly identical DNA binding specificities. To identify mechanisms that facilitate functional diversification among these transcription factor paralogs, we studied them in an equivalent cellular context. Analysis of chromatin and sequence suggest that divergent binding, and corresponding gene regulation, are driven by different abilities of AR and GR to interact with relatively inaccessible chromatin. Divergent genomic binding patterns can also be the result of subtle differences in DNA binding preference between AR and GR. Furthermore, the sequence composition of large regions (>10 kb) surrounding selectively occupied binding sites differs significantly, indicating a role for the sequence environment in guiding AR and GR to distinct binding sites. The comparison of binding sites that are shared shows that the specificity paradox can also be resolved by differences in the events that occur downstream of receptor binding. Specifically, shared binding sites display receptor-specific enhancer activity, cofactor recruitment and changes in histone modifications. Genomic deletion of shared binding sites demonstrates their contribution to directing receptor-specific gene regulation. Together, these data suggest that differences in genomic occupancy as well as divergence in the events that occur downstream of receptor binding direct functional diversification among transcription factor paralogs.


2016 ◽  
Vol 371 (1700) ◽  
pp. 20150431 ◽  
Author(s):  
O. Ievglevskyi ◽  
D. Isaev ◽  
O. Netsyk ◽  
A. Romanov ◽  
M. Fedoriuk ◽  
...  

Acid-sensing ion channels (ASICs) play an important role in numerous functions in the central and peripheral nervous systems ranging from memory and emotions to pain. The data correspond to a recent notion that each neuron and many glial cells of the mammalian brain express at least one member of the ASIC family. However, the mechanisms underlying the involvement of ASICs in neuronal activity are poorly understood. However, there are two exceptions, namely, the straightforward role of ASICs in proton-based synaptic transmission in certain brain areas and the role of the Ca 2+ -permeable ASIC1a subtype in ischaemic cell death. Using a novel orthosteric ASIC antagonist, we have found that ASICs specifically control the frequency of spontaneous inhibitory synaptic activity in the hippocampus. Inhibition of ASICs leads to a strong increase in the frequency of spontaneous inhibitory postsynaptic currents. This effect is presynaptic because it is fully reproducible in single synaptic boutons attached to isolated hippocampal neurons. In concert with this observation, inhibition of the ASIC current diminishes epileptic discharges in a low Mg 2+ model of epilepsy in hippocampal slices and significantly reduces kainate-induced discharges in the hippocampus in vivo . Our results reveal a significant novel role for ASICs. This article is part of the themed issue ‘Evolution brings Ca 2+ and ATP together to control life and death’.


2012 ◽  
Vol 92 (1) ◽  
pp. 103-111 ◽  
Author(s):  
H E Meyer zu Schwabedissen ◽  
S Oswald ◽  
C Bresser ◽  
A Nassif ◽  
C Modess ◽  
...  

2008 ◽  
Vol 105 (46) ◽  
pp. 18012-18017 ◽  
Author(s):  
Jun Kohyama ◽  
Takuro Kojima ◽  
Eriko Takatsuka ◽  
Toru Yamashita ◽  
Jun Namiki ◽  
...  

Neural stem/progenitor cells (NSCs/NPCs) give rise to neurons, astrocytes, and oligodendrocytes. It has become apparent that intracellular epigenetic modification including DNA methylation, in concert with extracellular cues such as cytokine signaling, is deeply involved in fate specification of NSCs/NPCs by defining cell-type specific gene expression. However, it is still unclear how differentiated neural cells retain their specific attributes by repressing cellular properties characteristic of other lineages. In previous work we have shown that methyl-CpG binding protein transcriptional repressors (MBDs), which are expressed predominantly in neurons in the central nervous system, inhibit astrocyte-specific gene expression by binding to highly methylated regions of their target genes. Here we report that oligodendrocytes, which do not express MBDs, can transdifferentiate into astrocytes both in vitro (cytokine stimulation) and in vivo (ischemic injury) through the activation of the JAK/STAT signaling pathway. These findings suggest that differentiation plasticity in neural cells is regulated by cell-intrinsic epigenetic mechanisms in collaboration with ambient cell-extrinsic cues.


2013 ◽  
Vol 110 (44) ◽  
pp. 17921-17926 ◽  
Author(s):  
S. C. J. Parker ◽  
M. L. Stitzel ◽  
D. L. Taylor ◽  
J. M. Orozco ◽  
M. R. Erdos ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. SCI-16-SCI-16
Author(s):  
Bing Ren

Abstract The 3-dimensional (3D) chromatin organization plays a critical role in gene regulation. Great strides have been made recently to characterize and identify cis regulatory elements from epigenome profiles in different cell types and tissues, but efforts have just begun to functionally characterize these long-range control elements. Mapping interactions between enhancers and promoters, and understanding how the 3D landscape of the genome constrains such interactions is fundamental to our understanding of genome function. I will present recent findings related to 3D genome organization in mammalian cells, with a particular focus on how chromatin organization contributes to transcriptional regulation. I will describe higher-order organizational features that are observed at the level of both the whole chromosome and individual loci. I will highlight changes in genome organization that occur during the course of differentiation, and discuss the functional relationship between chromatin architecture and gene regulation. Taken together, mounting evidence now shows that the genome organization plays an essential role in orchestrating the lineage-specific gene expression programs through modulating long- range interactions between enhancers and target genes. Disclosures Ren: Arima Genomics, Inc.: Equity Ownership, Patents & Royalties; Eli Lilly: Employment.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Selva Baltan ◽  
Safdar S. Jawaid ◽  
Anthony M. Chomyk ◽  
Grahame J. Kidd ◽  
Jacqueline Chen ◽  
...  

AbstractCognitive dysfunction occurs in greater than 50% of individuals with multiple sclerosis (MS). Hippocampal demyelination is a prominent feature of postmortem MS brains and hippocampal atrophy correlates with cognitive decline in MS patients. Cellular and molecular mechanisms responsible for neuronal dysfunction in demyelinated hippocampi are not fully understood. Here we investigate a mouse model of hippocampal demyelination where twelve weeks of treatment with the oligodendrocyte toxin, cuprizone, demyelinates over 90% of the hippocampus and causes decreased memory/learning. Long-term potentiation (LTP) of hippocampal CA1 pyramidal neurons is considered to be a major cellular readout of learning and memory in the mammalian brain. In acute slices, we establish that hippocampal demyelination abolishes LTP and excitatory post-synaptic potentials of CA1 neurons, while pre-synaptic function of Schaeffer collateral fibers is preserved. Demyelination also reduced Ca2+-mediated firing of hippocampal neurons in vivo. Using three-dimensional electron microscopy, we investigated the number, shape (mushroom, stubby, thin), and post-synaptic densities (PSDs) of dendritic spines that facilitate LTP. Hippocampal demyelination did not alter the number of dendritic spines. Surprisingly, dendritic spines appeared to be more mature in demyelinated hippocampi, with a significant increase in mushroom-shaped spines, more perforated PSDs, and more astrocyte participation in the tripartite synapse. RNA sequencing experiments identified 400 altered transcripts in demyelinated hippocampi. Gene transcripts that regulate myelination, synaptic signaling, astrocyte function, and innate immunity were altered in demyelinated hippocampi. Hippocampal remyelination rescued synaptic transmission, LTP, and the majority of gene transcript changes. We establish that CA1 neurons projecting demyelinated axons silence their dendritic spines and hibernate in a state that may protect the demyelinated axon and facilitates functional recovery following remyelination.


Author(s):  
Elizabeth Ing-Simmons ◽  
Roshan Vaid ◽  
Xin Yang Bing ◽  
Michael Levine ◽  
Mattias Mannervik ◽  
...  

AbstractThe relationship between chromatin organization and gene regulation remains unclear. While disruption of chromatin domains and domain boundaries can lead to misexpression of developmental genes, acute depletion of regulators of genome organization has a relatively small effect on gene expression. It is therefore uncertain whether gene expression and chromatin state drive chromatin organization or whether changes in chromatin organization facilitate cell-type-specific activation of gene expression. Here, using the dorsoventral patterning of the Drosophila melanogaster embryo as a model system, we provide evidence for the independence of chromatin organization and dorsoventral gene expression. We define tissue-specific enhancers and link them to expression patterns using single-cell RNA-seq. Surprisingly, despite tissue-specific chromatin states and gene expression, chromatin organization is largely maintained across tissues. Our results indicate that tissue-specific chromatin conformation is not necessary for tissue-specific gene expression but rather acts as a scaffold facilitating gene expression when enhancers become active.


Sign in / Sign up

Export Citation Format

Share Document