scholarly journals Bacteriophage adaptation to a mammalian mucosa reveals a trans–domain evolutionary axis

2021 ◽  
Author(s):  
Wai Hoe Chin ◽  
Ciaren Kett ◽  
Oren Cooper ◽  
Deike Müseler ◽  
Yaqi Zhang ◽  
...  

The majority of viruses within the human gut are obligate bacterial viruses known as bacteriophages (phages)1. Their bacteriotropism underscores the study of phage ecology in the gut, where they sustain top–down control2—4 and co–evolve5 with gut bacterial communities. Traditionally, these were investigated empirically via in vitro experimental evolution6—8 and more recently, in vivo models were adopted to account for gut niche effects4,9. Here, we probed beyond conventional phage–bacteria co–evolution to investigate the potential evolutionary interactions between phages and the mammalian ″host″. To capture the role of the mammalian host, we recapitulated a life–like mammalian gut mucosa using in vitro lab–on–a–chip devices (to wit, the gut–on–a–chip) and showed that the mucosal environment supports stable phage–bacteria co–existence. Next, we experimentally evolved phage populations within the gut–on–a–chip devices and discovered that phages adapt by de novo mutations and genetic recombination. We found that a single mutation in the phage capsid protein Hoc — known to facilitate phage adherence to mucus10 — caused altered phage binding to fucosylated mucin glycans. We demonstrated that the altered glycan–binding phenotype provided the evolved mutant phage a competitive fitness advantage over their ancestral wildtype phage in the gut–on–a–chip mucosal environment. Collectively, our findings revealed that phages — in addition to their evolutionary relationship with bacteria — are also able to engage in evolution with the mammalian host.

1961 ◽  
Vol 114 (1) ◽  
pp. 141-148 ◽  
Author(s):  
H. Schneider ◽  
Samuel B. Formal ◽  
L. S. Baron

Antibiotic-pretreated mice were fed orally an Hfr culture of streptomycin-resistant E. coli and 1 day later, a streptomycin-resistant F- S. typhimurium culture. Hybrids were recovered in relatively small numbers from the feces of these mice within 24 hours demonstrating that genetic recombination can occur within the intestinal tract of a mammalian host under experimental conditions. These hybrids multiplied rapidly and persisted throughout the course of the experiment. In addition, hybrids were recovered which had not been observed in single matings performed in vitro.


mBio ◽  
2017 ◽  
Vol 8 (5) ◽  
Author(s):  
Conrad L. Epting ◽  
Brian T. Emmer ◽  
Nga Y. Du ◽  
Joann M. Taylor ◽  
Ming Y. Makanji ◽  
...  

ABSTRACTAfrican trypanosomiasis is caused by infection with the protozoan parasiteTrypanosoma brucei. During infection, this pathogen divides rapidly to high density in the bloodstream of its mammalian host in a manner similar to that of leukemia. Like all eukaryotes,T. bruceihas a cell cycle involving thede novosynthesis of DNA regulated by ribonucleotide reductase (RNR), which catalyzes the conversion of ribonucleotides into their deoxy form. As an essential enzyme for the cell cycle, RNR is a common target for cancer chemotherapy. We hypothesized that inhibition of RNR by genetic or pharmacological means would impair parasite growthin vitroand prolong the survival of infected animals. Our results demonstrate that RNR inhibition is highly effective in suppressing parasite growth bothin vitroandin vivo. These results support drug discovery efforts targeting the cell cycle, not only for African trypanosomiasis but possibly also for other infections by eukaryotic pathogens.IMPORTANCEThe development of drugs to treat infections with eukaryotic pathogens is challenging because many key virulence factors have closely related homologues in humans. Drug toxicity greatly limits these development efforts. For pathogens that replicate at a high rate, especially in the blood, an alternative approach is to target the cell cycle directly, much as is done to treat some hematologic malignancies. The results presented here indicate that targeting the cell cycle via inhibition of ribonucleotide reductase is effective at killing trypanosomes and prolonging the survival of infected animals.


2018 ◽  
Vol 18 (5) ◽  
pp. 321-368 ◽  
Author(s):  
Juan A. Bisceglia ◽  
Maria C. Mollo ◽  
Nadia Gruber ◽  
Liliana R. Orelli

Neglected diseases due to the parasitic protozoa Leishmania and Trypanosoma (kinetoplastids) affect millions of people worldwide, and the lack of suitable treatments has promoted an ongoing drug discovery effort to identify novel nontoxic and cost-effective chemotherapies. Polyamines are ubiquitous small organic molecules that play key roles in kinetoplastid parasites metabolism, redox homeostasis and in the normal progression of cell cycles, which differ from those found in the mammalian host. These features make polyamines attractive in terms of antiparasitic drug development. The present work provides a comprehensive insight on the use of polyamine derivatives and related nitrogen compounds in the chemotherapy of kinetoplastid diseases. The amount of literature on this subject is considerable, and a classification considering drug targets and chemical structures were made. Polyamines, aminoalcohols and basic heterocycles designed to target the relevant parasitic enzyme trypanothione reductase are discussed in the first section, followed by compounds directed to less common targets, like parasite SOD and the aminopurine P2 transporter. Finally, the third section comprises nitrogen compounds structurally derived from antimalaric agents. References on the chemical synthesis of the selected compounds are reported together with their in vivo and/or in vitro IC50 values, and structureactivity relationships within each group are analyzed. Some favourable structural features were identified from the SAR analyses comprising protonable sites, hydrophobic groups and optimum distances between them. The importance of certain pharmacophoric groups or amino acid residues in the bioactivity of polyamine derived compounds is also discussed.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Moein Dehbashi ◽  
Zohreh Hojati ◽  
Majid Motovali-bashi ◽  
Mazdak Ganjalikhani-Hakemi ◽  
Akihiro Shimosaka ◽  
...  

AbstractCancer recurrence presents a huge challenge in cancer patient management. Immune escape is a key mechanism of cancer progression and metastatic dissemination. CD25 is expressed in regulatory T (Treg) cells including tumor-infiltrating Treg cells (TI-Tregs). These cells specially activate and reinforce immune escape mechanism of cancers. The suppression of CD25/IL-2 interaction would be useful against Treg cells activation and ultimately immune escape of cancer. Here, software, web servers and databases were used, at which in silico designed small interfering RNAs (siRNAs), de novo designed peptides and virtual screened small molecules against CD25 were introduced for the prospect of eliminating cancer immune escape and obtaining successful treatment. We obtained siRNAs with low off-target effects. Further, small molecules based on the binding homology search in ligand and receptor similarity were introduced. Finally, the critical amino acids on CD25 were targeted by a de novo designed peptide with disulfide bond. Hence we introduced computational-based antagonists to lay a foundation for further in vitro and in vivo studies.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii98-ii98
Author(s):  
Anne Marie Barrette ◽  
Alexandros Bouras ◽  
German Nudelman ◽  
Zarmeen Mussa ◽  
Elena Zaslavsky ◽  
...  

Abstract Glioblastoma (GBM) remains an incurable disease, in large part due to its malignant infiltrative spread, and current clinical therapy fails to target the invasive nature of tumor cells in disease progression and recurrence. Here, we use the YAP-TEAD inhibitor Verteporfin to target a convergence point for regulating tumor invasion/metastasis and establish the robust anti-invasive therapeutic efficacy of this FDA-approved drug and its survival benefit across several preclinical glioma models. Using patient-derived GBM cells and orthotopic xenograft models (PDX), we show that Verteporfin treatment disrupts YAP/TAZ-TEAD activity and processes related to cell adhesion, migration and epithelial-mesenchymal transition. In-vitro, Verteporfin impairs tumor migration, invasion and motility dynamics. In-vivo, intraperitoneal administration of Verteporfin in mice with orthotopic PDX tumors shows consistent drug accumulation within the brain and decreased infiltrative tumor burden, across three independent experiments. Interestingly, PDX tumors with impaired invasion after Verteporfin treatment downregulate CDH2 and ITGB1 adhesion protein levels within the tumor microenvironment. Finally, Verteporfin treatment confers survival benefit in two independent PDX models: as monotherapy in de-novo GBM and in combination with standard-of-care chemoradiation in recurrent GBM. These findings indicate potential therapeutic value of this FDA-approved drug if repurposed for GBM patients.


2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Nan Huang ◽  
Chang Xu ◽  
Liang Deng ◽  
Xue Li ◽  
Zhixuan Bian ◽  
...  

AbstractPhosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), an essential enzyme involved in de novo purine biosynthesis, is connected with formation of various tumors. However, the specific biological roles and related mechanisms of PAICS in gastric cancer (GC) remain unclear. In the present study, we identified for the first time that PAICS was significantly upregulated in GC and high expression of PAICS was correlated with poor prognosis of patients with GC. In addition, knockdown of PAICS significantly induced cell apoptosis, and inhibited GC cell growth both in vitro and in vivo. Mechanistic studies first found that PAICS was engaged in DNA damage response, and knockdown of PAICS in GC cell lines induced DNA damage and impaired DNA damage repair efficiency. Further explorations revealed that PAICS interacted with histone deacetylase HDAC1 and HDAC2, and PAICS deficiency decreased the expression of DAD51 and inhibited its recruitment to DNA damage sites by impairing HDAC1/2 deacetylase activity, eventually preventing DNA damage repair. Consistently, PAICS deficiency enhanced the sensitivity of GC cells to DNA damage agent, cisplatin (CDDP), both in vitro and in vivo. Altogether, our findings demonstrate that PAICS plays an oncogenic role in GC, which act as a novel diagnosis and prognostic biomarker for patients with GC.


1997 ◽  
Vol 8 (2) ◽  
pp. 175-200 ◽  
Author(s):  
H.F. Jenkinson ◽  
RJ Lamont

Streptococci express arrays of adhesins on their cell surfaces that facilitate adherence to substrates present in their natural environment within the mammalian host. A consequence of such promiscuous binding ability is that streptococcal cells may adhere simultaneously to a spectrum of substrates, including salivary glycoproteins, extracellular matrix and serum components, host cells, and other microbial cells. The multiplicity of streptococcal adherence interactions accounts, at least in part, for their success in colonizing the oral and epithelial surfaces of humans. Adhesion facilitates colonization and may be a precursor to tissue invasion and immune modulation, events that presage the development of disease. Many of the streptococcal adhesins and virulence-related factors are cell-wall-associated proteins containing repeated sequence blocks of amino acids. Linear sequences, both within the blocks and within non-repetitive regions of the proteins, have been implicated in substrate binding. Sequences and functions of these proteins among the streptococci have become assorted through gene duplication and horizontal transfer between bacterial populations. Several adhesins identified and characterized through in vitro binding assays have been analyzed for in vivo expression and function by means of animal models used for colonization and virulence. Information on the molecular structure of adhesins as related to their in vivo function will allow for the rational design of novel acellular vaccines, recombinant antibodies, and adhesion agonists for the future control or prevention of streptococcal colonization and streptococcal diseases.


e-Neuroforum ◽  
2007 ◽  
Vol 13 (4) ◽  
Author(s):  
Lars Fester ◽  
Janine Prange-Kiel ◽  
Gabriele M. Rune

ZusammenfassungUnsere Untersuchungen der letzten Jahre haben gezeigt, dass nicht das Ovar die Quelle für Estrogen induzierte synaptische Plastizität im Hippokampus ist, sondern dieses aus dem Hippokampus selber stammt und haben damit einen Paradigmawechsel eingeleitet, der Estrogen als Neuromodulator unabhängig vom Geschlecht identifiziert. Hippokampale Neurone von Ratten beiderlei Geschlechts sind in der Lage, aus Cholesterol Estrogene de novo zu synthetisieren. Diese hippokampale Estrogensynthese ist sowohl für den Erhalt von Spinesynapsen in vivo als auch in vitro essenziell. Die Hemmung der Estrogensynthese zieht einen Synapsenverlust nach sich und Langzeitpotenzierung ist nicht mehr induzierbar. Die Effekte von hippokampalem Estrogen sind auto-/parakriner Natur, die über die bekannten Estrogenrezeptor-Subtypen, ERα und ERβ, vermittelt werden. Die Regulation der hippokampalen Estrogensynthese erfolgt über GnRH und erklärt die Korrelation der Spinesynapsendichte mit dem weiblichen genitalen Zyklus, die für den Hippokampus spezifisch ist.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mylène Tajan ◽  
Marc Hennequart ◽  
Eric C. Cheung ◽  
Fabio Zani ◽  
Andreas K. Hock ◽  
...  

AbstractMany tumour cells show dependence on exogenous serine and dietary serine and glycine starvation can inhibit the growth of these cancers and extend survival in mice. However, numerous mechanisms promote resistance to this therapeutic approach, including enhanced expression of the de novo serine synthesis pathway (SSP) enzymes or activation of oncogenes that drive enhanced serine synthesis. Here we show that inhibition of PHGDH, the first step in the SSP, cooperates with serine and glycine depletion to inhibit one-carbon metabolism and cancer growth. In vitro, inhibition of PHGDH combined with serine starvation leads to a defect in global protein synthesis, which blocks the activation of an ATF-4 response and more broadly impacts the protective stress response to amino acid depletion. In vivo, the combination of diet and inhibitor shows therapeutic efficacy against tumours that are resistant to diet or drug alone, with evidence of reduced one-carbon availability. However, the defect in ATF4-response seen in vitro following complete depletion of available serine is not seen in mice, where dietary serine and glycine depletion and treatment with the PHGDH inhibitor lower but do not eliminate serine. Our results indicate that inhibition of PHGDH will augment the therapeutic efficacy of a serine depleted diet.


2021 ◽  
Vol 17 (7) ◽  
pp. 1293-1304
Author(s):  
Zhuofei Zhao ◽  
Xiaona Lin ◽  
Lulu Zhang ◽  
Xia Liu ◽  
Qingwen Wang ◽  
...  

De novo designed lipidated methotrexate was synthesized and self-assembled into microbubbles for targeted rheumatoid arthritis theranostic treatment. Controlled lipidatedmethotrexate delivery was achieved by ultrasound-targetedmicrobubble destruction technique. Methotrexate was dissociated inflammatory microenvironment of synovial cavity, owing to representive low pH and enriched leucocyte esterase. We first manipulated methotrexate controlled release with RAW 264.7 cell line in vitro and further verified with rheumatoid arthritis rabbits in vivo. Results showed that lipidated methotrexate microbubbles precisely affected infection focus and significantly enhanced rheumatoid arthritis curative effect comparing with dissociative methotrexate. This study indicates that lipidated methotrexate microbubbles might be considered as a promising rheumatoid arthritis theranostics medicine.


Sign in / Sign up

Export Citation Format

Share Document