scholarly journals Dynein light chain-dependent dimerization of Egalitarian is essential for maintaining oocyte fate in Drosophila.

2021 ◽  
Author(s):  
Hannah Neiswender ◽  
Chandler H Goldman ◽  
Rajalakshmi Veeranan-Karmegam ◽  
Graydon B. Gonsalvez

Egalitarian (Egl) is an RNA adaptor for the Dynein motor and is thought to link numerous, perhaps hundreds, of mRNAs with Dynein. Dynein, in turn, is responsible for the transport and localization of these mRNAs. Studies have shown that efficient mRNA binding by Egl requires the protein to dimerize. We recently demonstrated that Dynein light chain (Dlc) is responsible for facilitating the dimerization of Egl. Mutations in Egl that fail to interact with Dlc do not dimerize, and as such, are defective for mRNA binding. Consequently, this mutant does not efficiently associate with BicaudalD (BicD), the factor responsible for linking the Egl/mRNA complex with Dynein. In this report, we tested whether artificially dimerizing this Dlc-binding mutant using a leucine zipper would restore mRNA binding and rescue mutant phenotypes in vivo. Interestingly, we found that although artificial dimerization of Egl restored BicD binding, it only partially restored mRNA binding. As a result, Egl-dependent phenotypes, such as oocyte specification and mRNA localization, were only partially rescued. We hypothesize that Dlc-mediated dimerization of Egl results in a three-dimensional conformation of the Egl dimer that is best suited for mRNA binding. Although the leucine zipper restores Egl dimerization, it likely does not enable Egl to assemble into the conformation required for maximal mRNA binding activity.

2019 ◽  
Author(s):  
Chandler H. Goldman ◽  
Rajalakshmi Veeranan-Karmegam ◽  
Hannah Neiswender ◽  
Graydon B. Gonsalvez

AbstractA widely conserved mechanism of polarity establishment is the localization of mRNA to specific cellular regions. While it is clear that many mRNAs are transported to their destinations along microtubule tracks, much less is known regarding the mechanism by which these mRNAs are linked to microtubule motors. The RNA binding protein Egalitarian (Egl) is necessary for localization of several mRNAs in Drosophila oocytes and embryos. In addition to binding RNA, Egl also interacts with Dynein light chain (Dlc) and Bicaudal-D (BicD). The role of Dlc and BicD in mRNA localization has remained elusive. Like Egl, both proteins are required for oocyte specification. Null alleles in these genes result in an oogenesis block. In this report, we used an innovative approach to overcome the oogenesis block. Our findings reveal that the primary function of Dlc is to promote Egl dimerization. Loss of dimerization compromises the ability of Egl to bind RNA. Consequently, Egl is not bound to cargo, and is not able to efficiently associate with BicD and the Dynein motor. Our results therefore identify the key molecular steps required for assembling a localization competent mRNP.


2011 ◽  
Vol 22 (15) ◽  
pp. 2690-2701 ◽  
Author(s):  
Melissa D. Stuchell-Brereton ◽  
Amanda Siglin ◽  
Jun Li ◽  
Jeffrey K. Moore ◽  
Shubbir Ahmed ◽  
...  

Cytoplasmic dynein is a large multisubunit complex involved in retrograde transport and the positioning of various organelles. Dynein light chain (LC) subunits are conserved across species; however, the molecular contribution of LCs to dynein function remains controversial. One model suggests that LCs act as cargo-binding scaffolds. Alternatively, LCs are proposed to stabilize the intermediate chains (ICs) of the dynein complex. To examine the role of LCs in dynein function, we used Saccharomyces cerevisiae, in which the sole function of dynein is to position the spindle during mitosis. We report that the LC8 homologue, Dyn2, localizes with the dynein complex at microtubule ends and interacts directly with the yeast IC, Pac11. We identify two Dyn2-binding sites in Pac11 that exert differential effects on Dyn2-binding and dynein function. Mutations disrupting Dyn2 elicit a partial loss-of-dynein phenotype and impair the recruitment of the dynein activator complex, dynactin. Together these results indicate that the dynein-based function of Dyn2 is via its interaction with the dynein IC and that this interaction is important for the interaction of dynein and dynactin. In addition, these data provide the first direct evidence that LC occupancy in the dynein motor complex is important for function.


2006 ◽  
Vol 26 (15) ◽  
pp. 5744-5758 ◽  
Author(s):  
Sonia Guil ◽  
Jennifer C. Long ◽  
Javier F. Cáceres

ABSTRACT hnRNP A1 is a nucleocytoplasmic shuttling protein that is involved in many aspects of mRNA metabolism. We have previously shown that activation of the p38 stress-signaling pathway in mammalian cells results in both hyperphosphorylation and cytoplasmic accumulation of hnRNP A1, affecting alternative splicing regulation in vivo. Here we show that the stress-induced cytoplasmic accumulation of hnRNP A1 occurs in discrete phase-dense particles, the cytoplasmic stress granules (SGs). Interestingly, mRNA-binding activity is required for both phosphorylation of hnRNP A1 and localization to SGs. We also show that these effects are mediated by the Mnk1/2 protein kinases that act downstream of p38. Finally, depletion of hnRNP A1 affects the recovery of cells from stress, suggesting a physiologically significant role for hnRNP A1 in the stress response. Our data are consistent with a model whereby hnRNP A1 recruitment to SGs involves Mnk1/2-dependent phosphorylation of mRNA-bound hnRNP A1.


2020 ◽  
Vol 21 (5) ◽  
pp. 1749 ◽  
Author(s):  
Thomas J. Bauer ◽  
Erich Gombocz ◽  
Markus Wehland ◽  
Johann Bauer ◽  
Manfred Infanger ◽  
...  

The adhesion behavior of human tissue cells changes in vitro, when gravity forces affecting these cells are modified. To understand the mechanisms underlying these changes, proteins involved in cell-cell or cell-extracellular matrix adhesion, their expression, accumulation, localization, and posttranslational modification (PTM) regarding changes during exposure to microgravity were investigated. As the sialylation of adhesion proteins is influencing cell adhesion on Earth in vitro and in vivo, we analyzed the sialylation of cell adhesion molecules detected by omics studies on cells, which change their adhesion behavior when exposed to microgravity. Using a knowledge graph created from experimental omics data and semantic searches across several reference databases, we studied the sialylation of adhesion proteins glycosylated at their extracellular domains with regards to its sensitivity to microgravity. This way, experimental omics data networked with the current knowledge about the binding of sialic acids to cell adhesion proteins, its regulation, and interactions in between those proteins provided insights into the mechanisms behind our experimental findings, suggesting that balancing the sialylation against the de-sialylation of the terminal ends of the adhesion proteins’ glycans influences their binding activity. This sheds light on the transition from two- to three-dimensional growth observed in microgravity, mirroring cell migration and cancer metastasis in vivo.


2005 ◽  
Vol 53 (10) ◽  
pp. 1235-1243 ◽  
Author(s):  
Rui-An Wang ◽  
Ming Zhao ◽  
Marvin L. Meistrich ◽  
Rakesh Kumar

Mammalian spermatogenesis is a complex process involving regulatory interactions of many gene products. In this study, we found that dynein light chain-1 (DLC1), a component of the dynein motor complex, is highly expressed in mouse and rat testes. Immunohistochemically detectable levels of DLC1 are observed specifically in spermatids in steps 9–16 in distinct subcellular compartments: in steps 9–11, DLC1 is predominantly localized in the nucleus; in steps 12 and 13, it is found in both nucleus and cytoplasm; and in step 14–16, it is present exclusively in the cytoplasm. In addition, we found p21-activated kinase 1 (Pak1), a protein kinase that activates DLC1 by phosphorylating DLC1 at Serine 88, was also expressed during these stages of spermatogenesis. Pak1 was also expressed in Leydig cells, in preleptotene primary spermatocytes, and in round spermatids. The spermiogenic stage-specific expression of DLC1 suggests a role for DLC1 in chromatin condensation, spermatid shaping, and the final release of sperm from the spermatogenic epithelium. Further, Pak1 may also play a role in spermiogenesis by regulating DLC1 phosphorylation and, consequently, its function.


2017 ◽  
Vol 216 (8) ◽  
pp. 2565-2580 ◽  
Author(s):  
Kristen B. Farrell ◽  
Seth McDonald ◽  
Andrew K. Lamb ◽  
Colette Worcester ◽  
Olve B. Peersen ◽  
...  

Clathrin- and actin-mediated endocytosis is essential in eukaryotic cells. In this study, we demonstrate that Tda2 is a novel protein of the endocytic machinery necessary for normal internalization of native cargo in yeast. Tda2 has not been classified in any protein family. Unexpectedly, solving the crystal structure of Tda2 revealed it belongs to the dynein light chain family. However, Tda2 works independently of the dynein motor complex and microtubules. Tda2 forms a tight complex with the polyproline motif–rich protein Aim21, which interacts physically with the SH3 domain of the Arp2/3 complex regulator Bbc1. The Tda2–Aim21 complex localizes to endocytic sites in a Bbc1- and filamentous actin–dependent manner. Importantly, the Tda2–Aim21 complex interacts directly with and facilitates the recruitment of actin-capping protein, revealing barbed-end filament capping at endocytic sites to be a regulated event. Thus, we have uncovered a new layer of regulation of the actin cytoskeleton by a member of a conserved protein family that has not been previously associated with a function in endocytosis.


1995 ◽  
Vol 108 (12) ◽  
pp. 3757-3764 ◽  
Author(s):  
S.M. King ◽  
R.S. Patel-King

We describe here the molecular cloning of the M(r) 18,000 dynein light chain from the outer arm of Chlamydomonas flagella. In vivo, this molecule is directly associated with the gamma dynein heavy chain. Sequence analysis indicates that this light chain is a novel member of the calmodulin superfamily of Ca2+ binding regulatory proteins; this molecule is 42, 37 and 36% identical to calmodulin, centrin/caltractin and troponin C, respectively, and also shows significant similarity to myosin light chains. Although four helix-loop-helix elements are evident, only two conform precisely to the EF hand consensus and are therefore predicted to bind Ca2+ in vivo. In vitro Ca2+ binding studies indicate that this dynein light chain (expressed as a C-terminal fusion with maltose binding protein) has at least one functional Ca2+ binding site with an apparent affinity for Ca2+ of approximately 3 × 10(−5) M. Within the Chlamydomonas flagellum, the transition from an assymmetric to a symmetric waveform (which implies an alteration in dynein activity) is mediated by an increase in intraflagellar Ca2+ from 10(−6) to 10(−1) M; this transition is altered in mutants that lack the outer arm. The data presented here suggest that a Ca(2+)-dependent alteration in the interaction of this dynein light chain with the motor containing heavy chain may affect outer arm function during flagellar reversal.


2012 ◽  
Vol 198 (6) ◽  
pp. 1039-1054 ◽  
Author(s):  
Anja K. Dunsch ◽  
Dean Hammond ◽  
Jennifer Lloyd ◽  
Lothar Schermelleh ◽  
Ulrike Gruneberg ◽  
...  

The cytoplasmic dynein motor generates pulling forces to center and orient the mitotic spindle within the cell. During this positioning process, dynein oscillates from one pole of the cell cortex to the other but only accumulates at the pole farthest from the spindle. Here, we show that dynein light chain 1 (DYNLL1) is required for this asymmetric cortical localization of dynein and has a specific function defining spindle orientation. DYNLL1 interacted with a spindle-microtubule–associated adaptor formed by CHICA and HMMR via TQT motifs in CHICA. In cells depleted of CHICA or HMMR, the mitotic spindle failed to orient correctly in relation to the growth surface. Furthermore, CHICA TQT motif mutants localized to the mitotic spindle but failed to recruit DYNLL1 to spindle microtubules and did not correct the spindle orientation or dynein localization defects. These findings support a model where DYNLL1 and CHICA-HMMR form part of the regulatory system feeding back spindle position to dynein at the cell cortex.


2007 ◽  
Vol 283 (3) ◽  
pp. 1472-1479 ◽  
Author(s):  
Faviola Tavares-Carreón ◽  
Yolanda Camacho-Villasana ◽  
Angélica Zamudio-Ochoa ◽  
Miguel Shingú-Vázquez ◽  
Alfredo Torres-Larios ◽  
...  

Pet309 is a protein essential for respiratory growth. It is involved in translation of the yeast mitochondrial COX1 gene, which encodes subunit I of the cytochrome c oxidase. Pet309 is also involved in stabilization of the COX1 mRNA. Mutations in a similar human protein, Lrp130, are associated with Leigh syndrome, where cytochrome c oxidase activity is affected. The sequence of Pet309 reveals the presence of at least seven pentatricopeptide repeats (PPRs) located in tandem in the central portion of the protein. Proteins containing PPR motifs are present in mitochondria and chloroplasts and are in general involved in RNA metabolism. Despite the increasing number of proteins from this family found to play essential roles in mitochondria and chloroplasts, little is understood about the mechanism of action of the PPR domains present in these proteins. In a series of in vivo analyses we constructed a pet309 mutant lacking the PPR motifs. Although the stability of the COX1 mRNA was not affected, synthesis of Cox1 was abolished. The deletion of one PPR motif at a time showed that all the PPR motifs are required for COX1 mRNA translation and respiratory growth. Mutations of basic residues in PPR3 caused reduced respiratory growth. According to a molecular model, these residues are facing a central cavity that could be involved in mRNA-binding activity, forming a possible path for this molecule on Pet309. Our results show that the RNA metabolism function of Pet309 is found in at least two separate domains of the protein.


Parasitology ◽  
2015 ◽  
Vol 142 (11) ◽  
pp. 1375-1386 ◽  
Author(s):  
CHARLOTTE M. THOMAS ◽  
DAVID J. TIMSON

SUMMARYFhCaBP2 is a Fasciola hepatica protein which belongs to a family of helminth calcium-binding proteins which combine an N-terminal domain containing two EF-hand motifs and a C-terminal dynein light chain-like (DLC-like) domain. Its predicted structure showed two globular domains joined by a flexible linker. Recombinant FhCaBP2 interacted reversibly with calcium and manganese ions, but not with magnesium, barium, strontium, copper (II), colbalt (II), iron (II), nickel, lead or potassium ions. Cadmium (II) ions appeared to bind non-site-specifically and destabilize the protein. Interaction with either calcium or magnesium ions results in a conformational change in which the protein's surface becomes more hydrophobic. The EF-hand domain alone was able to interact with calcium and manganese ions; the DLC-like domain was not. Alteration of a residue (Asp-58 to Ala) in the second EF-hand motif in this domain abolished ion-binding activity. This suggests that the second EF-hand is the one responsible for ion-binding. FhCaBP2 homodimerizes and the extent of dimerization was not affected by calcium ions or by the aspartate to alanine substitution in the second EF-hand. The isolated EF-hand and DLC-like domains are both capable of homodimerization. FhCaBP2 interacted with the calmodulin antagonists trifluoperazine, chlorpromazine, thiamylal and W7. Interestingly, while chlorpromazine and thiamylal interacted with the EF-hand domain (as expected), trifluoperazine and W7 bound to the DLC-like domain. Overall, FhCaBP2 has distinct biochemical properties compared with other members of this protein family from Fasciola hepatica, a fact which supports the hypothesis that these proteins have different physiological roles.


Sign in / Sign up

Export Citation Format

Share Document