scholarly journals K-mer based prediction of Clostridioides difficile relatedness and ribotypes

2021 ◽  
Author(s):  
Matthew P Moore ◽  
Mark Wilcox ◽  
A Sarah Walker ◽  
David W Eyre

Comparative analysis of Clostridioides difficile whole-genome sequencing (WGS) data enables fine scaled investigation of transmission and is increasingly becoming part of routine surveillance. However, these analyses are constrained by the computational requirements of the large volumes of data involved. By decomposing WGS reads or assemblies into k-mers and using the dimensionality reduction technique MinHash, it is possible to rapidly approximate genomic distances without alignment. Here we assessed the performance of MinHash, as implemented by sourmash, in predicting single nucleotide differences between genomes (SNPs) and C. difficile ribotypes (RTs). For a set of 1,905 diverse C. difficile genomes (differing by 0-168,519 SNPs), using sourmash to screen for closely related genomes, at a sensitivity of 100% for pairs ≤10 SNPs, sourmash reduced the number of pairs from 1,813,560 overall to 161,934, i.e., by 91%, with a positive predictive value of 32% to correctly identify pairs ≤10 SNPs (maximum SNP distance 4,144). At a sensitivity of 95%, pairs were reduced by 94% to 108,266 and PPV increased to 45% (maximum SNP distance 1,009). Increasing the MinHash sketch size above 2000 produced minimal performance improvement. We also explored a MinHash similarity-based ribotype prediction method. Genomes with known ribotypes (n=3,937) were split into a training set (2,937) and test set (1,000) randomly. The training set was used to construct a sourmash index against which genomes from the test set were compared. If the closest 5 genomes in the index had the same ribotype this was taken to predict the searched genome's ribotype. Using our MinHash ribotype index, predicted ribotypes were correct in 780/1000 (78%) genomes, incorrect in 20 (2%), and indeterminant in 200 (20%). Relaxing the classifier to 4/5 closest matches with the same RT improved the correct predictions to 87%. Using MinHash it is possible to subsample C. difficile genome k-mer hashes and use them to approximate small genomic differences within minutes, significantly reducing the search space for further analysis.

Author(s):  
Botao Jiang ◽  
Fuyu Zhao

Critical heat flux (CHF) is one of the most crucial design criteria in other boiling systems such as evaporator, steam generators, fuel cooling system, boiler, etc. This paper presents an alternative CHF prediction method named projection support vector regression (PSVR), which is a combination of feature vector selection (FVS) method and support vector regression (SVR). In PSVR, the FVS method is first used to select a relevant subset (feature vectors, FVs) from the training data, and then both the training data and the test data are projected into the subspace constructed by FVs, and finally SVR is applied to estimate the projected data. An available CHF dataset taken from the literature is used in this paper. The CHF data are split into two subsets, the training set and the test set. The training set is used to train the PSVR model and the test set is then used to evaluate the trained model. The predicted results of PSVR are compared with those of artificial neural networks (ANNs). The parametric trends of CHF are also investigated using the PSVR model. It is found that the results of the proposed method not only fit the general understanding, but also agree well with the experimental data. Thus, PSVR can be used successfully for prediction of CHF in contrast to ANNs.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Mohammad Haekal ◽  
Henki Bayu Seta ◽  
Mayanda Mega Santoni

Untuk memprediksi kualitas air sungai Ciliwung, telah dilakukan pengolahan data-data hasil pemantauan secara Online Monitoring dengan menggunakan Metode Data Mining. Pada metode ini, pertama-tama data-data hasil pemantauan dibuat dalam bentuk tabel Microsoft Excel, kemudian diolah menjadi bentuk Pohon Keputusan yang disebut Algoritma Pohon Keputusan (Decision Tree) mengunakan aplikasi WEKA. Metode Pohon Keputusan dipilih karena lebih sederhana, mudah dipahami dan mempunyai tingkat akurasi yang sangat tinggi. Jumlah data hasil pemantauan kualitas air sungai Ciliwung yang diolah sebanyak 5.476 data. Hasil klarifikasi dengan Pohon Keputusan, dari 5.476 data ini diperoleh jumlah data yang mengindikasikan sungai Ciliwung Tidak Tercemar sebanyak 1.059 data atau sebesar 19,3242%, dan yang mengindikasikan Tercemar sebanyak 4.417 data atau 80,6758%. Selanjutnya data-data hasil pemantauan ini dievaluasi menggunakan 4 Opsi Tes (Test Option) yaitu dengan Use Training Set, Supplied Test Set, Cross-Validation folds 10, dan Percentage Split 66%. Hasil evaluasi dengan 4 opsi tes yang digunakan ini, semuanya menunjukkan tingkat akurasi yang sangat tinggi, yaitu diatas 99%. Dari data-data hasil peneltian ini dapat diprediksi bahwa sungai Ciliwung terindikasi sebagai sungai tercemar bila mereferensi kepada Peraturan Pemerintah Republik Indonesia nomor 82 tahun 2001 dan diketahui pula bahwa penggunaan aplikasi WEKA dengan Algoritma Pohon Keputusan untuk mengolah data-data hasil pemantauan dengan mengambil tiga parameter (pH, DO dan Nitrat) adalah sangat akuran dan tepat. Kata Kunci : Kualitas air sungai, Data Mining, Algoritma Pohon Keputusan, Aplikasi WEKA.


2009 ◽  
Vol 7 (4) ◽  
pp. 846-856 ◽  
Author(s):  
Andrey Toropov ◽  
Alla Toropova ◽  
Emilio Benfenati

AbstractUsually, QSPR is not used to model organometallic compounds. We have modeled the octanol/water partition coefficient for organometallic compounds of Na, K, Ca, Cu, Fe, Zn, Ni, As, and Hg by optimal descriptors calculated with simplified molecular input line entry system (SMILES) notations. The best model is characterized by the following statistics: n=54, r2=0.9807, s=0.677, F=2636 (training set); n=26, r2=0.9693, s=0.969, F=759 (test set). Empirical criteria for the definition of the applicability domain for these models are discussed.


2020 ◽  
Vol 36 (Supplement_2) ◽  
pp. i831-i839
Author(s):  
Dong-gi Lee ◽  
Myungjun Kim ◽  
Sang Joon Son ◽  
Chang Hyung Hong ◽  
Hyunjung Shin

Abstract Motivation Recently, various approaches for diagnosing and treating dementia have received significant attention, especially in identifying key genes that are crucial for dementia. If the mutations of such key genes could be tracked, it would be possible to predict the time of onset of dementia and significantly aid in developing drugs to treat dementia. However, gene finding involves tremendous cost, time and effort. To alleviate these problems, research on utilizing computational biology to decrease the search space of candidate genes is actively conducted. In this study, we propose a framework in which diseases, genes and single-nucleotide polymorphisms are represented by a layered network, and key genes are predicted by a machine learning algorithm. The algorithm utilizes a network-based semi-supervised learning model that can be applied to layered data structures. Results The proposed method was applied to a dataset extracted from public databases related to diseases and genes with data collected from 186 patients. A portion of key genes obtained using the proposed method was verified in silico through PubMed literature, and the remaining genes were left as possible candidate genes. Availability and implementation The code for the framework will be available at http://www.alphaminers.net/. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 22 (12) ◽  
pp. 6598
Author(s):  
Cheng Wang ◽  
Jun Zhang ◽  
Peng Chen ◽  
Bing Wang

Backgroud: The prediction of drug–target interactions (DTIs) is of great significance in drug development. It is time-consuming and expensive in traditional experimental methods. Machine learning can reduce the cost of prediction and is limited by the characteristics of imbalanced datasets and problems of essential feature selection. Methods: The prediction method based on the Ensemble model of Multiple Feature Pairs (Ensemble-MFP) is introduced. Firstly, three negative sets are generated according to the Euclidean distance of three feature pairs. Then, the negative samples of the validation set/test set are randomly selected from the union set of the three negative sets in the validation set/test set. At the same time, the ensemble model with weight is optimized and applied to the test set. Results: The area under the receiver operating characteristic curve (area under ROC, AUC) in three out of four sub-datasets in gold standard datasets was more than 94.0% in the prediction of new drugs. The effectiveness of the proposed method is also shown with the comparison of state-of-the-art methods and demonstration of predicted drug–target pairs. Conclusion: The Ensemble-MFP can weigh the existing feature pairs and has a good prediction effect for general prediction on new drugs.


2021 ◽  
Vol 11 (5) ◽  
pp. 2039
Author(s):  
Hyunseok Shin ◽  
Sejong Oh

In machine learning applications, classification schemes have been widely used for prediction tasks. Typically, to develop a prediction model, the given dataset is divided into training and test sets; the training set is used to build the model and the test set is used to evaluate the model. Furthermore, random sampling is traditionally used to divide datasets. The problem, however, is that the performance of the model is evaluated differently depending on how we divide the training and test sets. Therefore, in this study, we proposed an improved sampling method for the accurate evaluation of a classification model. We first generated numerous candidate cases of train/test sets using the R-value-based sampling method. We evaluated the similarity of distributions of the candidate cases with the whole dataset, and the case with the smallest distribution–difference was selected as the final train/test set. Histograms and feature importance were used to evaluate the similarity of distributions. The proposed method produces more proper training and test sets than previous sampling methods, including random and non-random sampling.


Author(s):  
Rui Guo ◽  
Xiaobin Hu ◽  
Haoming Song ◽  
Pengpeng Xu ◽  
Haoping Xu ◽  
...  

Abstract Purpose To develop a weakly supervised deep learning (WSDL) method that could utilize incomplete/missing survival data to predict the prognosis of extranodal natural killer/T cell lymphoma, nasal type (ENKTL) based on pretreatment 18F-FDG PET/CT results. Methods One hundred and sixty-seven patients with ENKTL who underwent pretreatment 18F-FDG PET/CT were retrospectively collected. Eighty-four patients were followed up for at least 2 years (training set = 64, test set = 20). A WSDL method was developed to enable the integration of the remaining 83 patients with incomplete/missing follow-up information in the training set. To test generalization, these data were derived from three types of scanners. Prediction similarity index (PSI) was derived from deep learning features of images. Its discriminative ability was calculated and compared with that of a conventional deep learning (CDL) method. Univariate and multivariate analyses helped explore the significance of PSI and clinical features. Results PSI achieved area under the curve scores of 0.9858 and 0.9946 (training set) and 0.8750 and 0.7344 (test set) in the prediction of progression-free survival (PFS) with the WSDL and CDL methods, respectively. PSI threshold of 1.0 could significantly differentiate the prognosis. In the test set, WSDL and CDL achieved prediction sensitivity, specificity, and accuracy of 87.50% and 62.50%, 83.33% and 83.33%, and 85.00% and 75.00%, respectively. Multivariate analysis confirmed PSI to be an independent significant predictor of PFS in both the methods. Conclusion The WSDL-based framework was more effective for extracting 18F-FDG PET/CT features and predicting the prognosis of ENKTL than the CDL method.


2018 ◽  
Vol 19 (11) ◽  
pp. 3423 ◽  
Author(s):  
Ting Wang ◽  
Lili Tang ◽  
Feng Luan ◽  
M. Natália D. S. Cordeiro

Organic compounds are often exposed to the environment, and have an adverse effect on the environment and human health in the form of mixtures, rather than as single chemicals. In this paper, we try to establish reliable and developed classical quantitative structure–activity relationship (QSAR) models to evaluate the toxicity of 99 binary mixtures. The derived QSAR models were built by forward stepwise multiple linear regression (MLR) and nonlinear radial basis function neural networks (RBFNNs) using the hypothetical descriptors, respectively. The statistical parameters of the MLR model provided were N (number of compounds in training set) = 79, R2 (the correlation coefficient between the predicted and observed activities)= 0.869, LOOq2 (leave-one-out correlation coefficient) = 0.864, F (Fisher’s test) = 165.494, and RMS (root mean square) = 0.599 for the training set, and Next (number of compounds in external test set) = 20, R2 = 0.853, qext2 (leave-one-out correlation coefficient for test set)= 0.825, F = 30.861, and RMS = 0.691 for the external test set. The RBFNN model gave the statistical results, namely N = 79, R2 = 0.925, LOOq2 = 0.924, F = 950.686, RMS = 0.447 for the training set, and Next = 20, R2 = 0.896, qext2 = 0.890, F = 155.424, RMS = 0.547 for the external test set. Both of the MLR and RBFNN models were evaluated by some statistical parameters and methods. The results confirm that the built models are acceptable, and can be used to predict the toxicity of the binary mixtures.


Sign in / Sign up

Export Citation Format

Share Document