scholarly journals Intimate genetic relationships and fungicide resistance in multiple strains of human pathogenic fungus Aspergillus fumigatus isolated from a plant bulb

2021 ◽  
Author(s):  
Hiroki Takahashi ◽  
Sayoko Oiki ◽  
Yoko Kusuya ◽  
Syun-ichi Urayama ◽  
Daisuke Hagiwara

Fungal infections are increasingly dangerous because of environmentally-dispersed resistance to antifungal drugs. Azoles are commonly used antifungal drugs, but they are also used as fungicides in agriculture, which may enable enrichment of azole-resistant strains of the human pathogen Aspergillus fumigatus in the environment. Understanding of environmental dissemination and enrichment of genetic variation associated with azole resistance in A. fumigatus is required to suppress resistant strains. Here, we focused on eight strains of azole-resistant A. fumigatus isolated from a single tulip bulb for sale in Japan. This set includes strains with TR34/L98H/T289A/I364V/G448S and TR46/Y121F/T289A/S363P/I364V/G448S mutations in the cyp51A gene, which showed higher tolerance to several azoles than strains harboring TR46/Y121F/T289A mutation. The strains were typed by microsatellite typing, single nucleotide polymorphism profiles, and mitochondrial and nuclear genome analyses. The strains grouped differently using each typing method, suggesting historical genetic recombination among the strains. Our data also revealed that some strains isolated from the tulip bulb showed tolerance to other classes of fungicide, such as QoI and carbendazim, followed by related amino acid alterations in the target proteins. Considering spatial-temporal factors, plant bulbs are an excellent environmental niche for fungal strains to encounter partners, and to obtain and spread resistance-associated mutations.

2020 ◽  
Vol 65 (10) ◽  
pp. 82-91
Author(s):  
Phuong Nguyen Anh ◽  
Mai Le Thi Tuyet ◽  
Trung Trieu Anh

Mucormycosis is an uncommon but life-threatening invasive fungal infection, mostly occurs in immunocompromised patients. Lacking the appropriate antifungal drugs is one of the reasons that lead to difficulties in the management of mucormycosis. Curcuma longa has been used traditionally and widely to treat various diseases, including fungal infections. In the search for novel antifungal compounds from natural resources, we evaluated the effect of rhizome crude extract of C. longa on Mucor circinelloides – a causal agent of mucormycosis. The results of screening, using broth dilution method and agar-well diffusion method, showed that the C. longa extract exhibited promising antifungal activity against the fungus M. circinelloides. In liquid medium, C. longa extract decreased the ability of spore germination and the speed of hyphae formation of M. circinelloides decreased by up to approximately 70% and 90%, respectively. Besides, in a solid medium, the crude extract presented similar activity with amphotericin B (400 μg\mL) in decreasing the growth of M. circinelloides by nearly 77%. Moreover, the extract of C. longa also likely to induce the yeast-like type of growth of the dimorphic M. circinelloides in the early stage. These results suggest the plant could be a potential source for further study on biochemical components and the mechanism of its antifungal activity.


2007 ◽  
Vol 76 (2) ◽  
pp. 820-827 ◽  
Author(s):  
Judith Behnsen ◽  
Andrea Hartmann ◽  
Jeannette Schmaler ◽  
Alexander Gehrke ◽  
Axel A. Brakhage ◽  
...  

ABSTRACT The opportunistic human pathogenic fungus Aspergillus fumigatus causes severe systemic infections and is a major cause of fungal infections in immunocompromised patients. A. fumigatus conidia activate the alternative pathway of the complement system. In order to assess the mechanisms by which A. fumigatus evades the activated complement system, we analyzed the binding of host complement regulators to A. fumigatus. The binding of factor H and factor H-like protein 1 (FHL-1) from human sera to A. fumigatus conidia was shown by adsorption assays and immunostaining. In addition, factor H-related protein 1 (FHR-1) bound to conidia. Adsorption assays with recombinant factor H mutants were used to localize the binding domains. One binding region was identified within N-terminal short consensus repeats (SCRs) 1 to 7 and a second one within C-terminal SCR 20. Plasminogen was identified as the fourth host regulatory molecule that binds to A. fumigatus conidia. In contrast to conidia, other developmental stages of A. fumigatus, like swollen conidia or hyphae, did not bind to factor H, FHR-1, FHL-1, and plasminogen, thus indicating the developmentally regulated expression of A. fumigatus surface ligands. Both factor H and plasminogen maintained regulating activity when they were bound to the conidial surface. Bound factor H acted as a cofactor to the factor I-mediated cleavage of C3b. Plasminogen showed proteolytic activity when activated to plasmin by urokinase-type plasminogen activator. These data show that A. fumigatus conidia bind to complement regulators, and these bound host regulators may contribute to evasion of a host complement attack.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Adriana Oliveira Manfiolli ◽  
Filipe Silva Siqueira ◽  
Thaila Fernanda dos Reis ◽  
Patrick Van Dijck ◽  
Sanne Schrevens ◽  
...  

ABSTRACT The pathogenic fungus Aspergillus fumigatus is able to adapt to extremely variable environmental conditions. The A. fumigatus genome contains four genes coding for mitogen-activated protein kinases (MAPKs), which are important regulatory knots involved in diverse cellular responses. From a clinical perspective, MAPK activity has been connected to salvage pathways, which can determine the failure of effective treatment of invasive mycoses using antifungal drugs. Here, we report the characterization of the Saccharomyces cerevisiae Fus3 ortholog in A. fumigatus, designated MpkB. We demonstrate that MpkB is important for conidiation and that its deletion induces a copious increase of dihydroxynaphthalene (DHN)-melanin production. Simultaneous deletion of mpkB and mpkA, the latter related to maintenance of the cell wall integrity, normalized DHN-melanin production. Localization studies revealed that MpkB translocates into the nuclei when A. fumigatus germlings are exposed to caspofungin stress, and this is dependent on the cross-talk interaction with MpkA. Additionally, DHN-melanin formation was also increased after deletion of genes coding for the Gα protein GpaA and for the G protein-coupled receptor GprM. Yeast two-hybrid and coimmunoprecipitation assays confirmed that GpaA and GprM interact, suggesting their role in the MpkB signaling cascade. IMPORTANCE Aspergillus fumigatus is the most important airborne human pathogenic fungus, causing thousands of deaths per year. Its lethality is due to late and often inaccurate diagnosis and the lack of efficient therapeutics. The failure of efficient prophylaxis and therapy is based on the ability of this pathogen to activate numerous salvage pathways that are capable of overcoming the different drug-derived stresses. A major role in the protection of A. fumigatus is played by melanins. Melanins are cell wall-associated macromolecules classified as virulence determinants. The understanding of the various signaling pathways acting in this organism can be used to elucidate the mechanism beyond melanin production and help to identify ideal drug targets.


Author(s):  
Lisa Kirchhoff ◽  
Silke Dittmer ◽  
Ann-Kathrin Weisner ◽  
Jan Buer ◽  
Peter-Michael Rath ◽  
...  

Abstract Objectives Patients with immunodeficiency or cystic fibrosis frequently suffer from respiratory fungal infections. In particular, biofilm-associated fungi cause refractory infection manifestations, linked to increased resistance to anti-infective agents. One emerging filamentous fungus is Lomentospora prolificans. Here, the biofilm-formation capabilities of L. prolificans isolates were investigated and the susceptibility of biofilms to various antifungal agents was analysed. Methods Biofilm formation of L. prolificans (n = 11) was estimated by crystal violet stain and antibiofilm activity was additionally determined via detection of metabolically active biofilm using an XTT assay. Amphotericin B, micafungin, voriconazole and olorofim were compared with regard to their antibiofilm effects when added prior to adhesion, after adhesion and on mature and preformed fungal biofilms. Imaging via confocal laser scanning microscopy was carried out to demonstrate the effect of drug treatment on the fungal biofilm. Results Antibiofilm activities of the tested antifungal agents were shown to be most effective on adherent cells whilst mature biofilm was the most resistant. The most promising antibiofilm effects were detected with voriconazole and olorofim. Olorofim showed an average minimum biofilm eradication concentration (MBEC) of 0.06 mg/L, when added prior to and after adhesion. The MBECs of voriconazole were ≤4 mg/L. On mature biofilm the MBECs of olorofim and voriconazole were higher than the previously determined MICs against planktonic cultures. In contrast, amphotericin B and especially micafungin did not exhibit sufficient antibiofilm activity against L. prolificans. Conclusions To our knowledge, this is the first study demonstrating the antibiofilm potential of olorofim against the human pathogenic fungus L. prolificans.


Author(s):  
Elena Campione ◽  
Roberta Gaziano ◽  
Elena Doldo ◽  
Daniele Marino ◽  
Mattia Falconi ◽  
...  

AIM: Aspergillus fumigatus is the most common opportunistic fungal pathogen and causes invasive pulmonary aspergillosis (IPA), with high mortality among immunosuppressed patients. Fungistatic activity of all-trans retinoic acid (ATRA) has been recently described in vitro. We evaluated the efficacy of ATRA in vivo and its potential synergistic interaction with other antifungal drugs. MATERIALS AND METHODS: A rat model of IPA and in vitro experiments were performed to assess the efficacy of ATRA against Aspergillus in association with classical antifungal drugs and in silico studies used to clarify its mechanism of action. RESULTS: ATRA (0.5 and 1 mM) displayed a strong fungistatic activity in Aspergillus cultures, while at lower concentrations, synergistically potentiated fungistatic efficacy of sub-inhibitory concentration of Amphotericin B (AmB) and Posaconazole (POS). ATRA also enhanced macrophagic phagocytosis of conidia. In a rat model of IPA, ATRA reduced mortality similarly to Posaconazole. CONCLUSION: Fungistatic efficacy of ATRA alone and synergistically with other antifungal drugs was documented in vitro, likely by inhibiting fungal Hsp90 expression and Hsp90-related genes. ATRA reduced mortality in a model of IPA in vivo. Those findings suggest ATRA as suitable fungistatic agent, also to reduce dosage and adverse reaction of classical antifungal drugs, and new therapeutic strategies against IPA and systemic fungal infections.


2003 ◽  
Vol 2 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Arnaud Firon ◽  
François Villalba ◽  
Roland Beffa ◽  
Christophe d'Enfert

ABSTRACT The opportunistic pathogen Aspergillus fumigatus is the most frequent cause of deadly airborne fungal infections in developed countries. In order to identify novel antifungal-drug targets, we investigated the genome of A. fumigatus for genes that are necessary for efficient fungal growth. An artificial A. fumigatus diploid strain with one copy of an engineered impala160 transposon from Fusarium oxysporum integrated into its genome was used to generate a library of diploid strains by random in vivo transposon mutagenesis. Among 2,386 heterozygous diploid strains screened by parasexual genetics, 1.2% had a copy of the transposable element integrated into a locus essential for A. fumigatus growth. Comparison of genomic sequences flanking impala160 in these mutants with that of the genome of A. fumigatus allowed the characterization of 20 previously uncharacterized A. fumigatus genes. Among these, homologues of genes essential for Saccharomyces cerevisiae growth have been identified, as well as genes that do not have homologues in other fungal species. These results confirm that heterologous transposition using the transposable element impala is a powerful tool for functional genomics in ascomycota, and they pave the way for defining the complete set of essential genes in A. fumigatus, the first step toward target-based development of new antifungal drugs.


Medicina ◽  
2007 ◽  
Vol 43 (8) ◽  
pp. 657 ◽  
Author(s):  
Vilma Petrikaite ◽  
Eduardas Tarasevišius ◽  
Alvydas Pavilonis

Until the 20th century fungal infections were rather easy cured, and the need of new antifungal drugs was low. However, low choice of antifungal preparations, their toxicity, limited spectrum of action, and ability to produce resistant strains show the need of new effective medicines for systemic fungal diseases in nowadays. Our goal of research was to synthesize new antimicrobial compounds containing three or more pharmacophores in one molecule. The initial 5-substituted-2-methylmercaptothiazolidin-4-ones were subjected to S-demethylation to yield 2- amino-substituted thiazolidinones. Ethacridine, nitrofuran aldehydes and nitrobenzene aldehyde as pharmacophoric amino or aldehyde group having compounds have been used. Antimicrobial (antifungal) activity of the new compounds was screened in vitro in these bacterial cultures: Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Bacillus subtilis ATCC 6633, Klebsiella pneumoniae ATCC 33499 and fungal cultures: Candida albicans ATCC 60l93, Candida glabrata, Candida krusei, Candida kefyr ATCC 86l4, Candida tropicalis ATCC 8302, Candida parapsilosis. Results showed that the new compounds were significantly more effective as antimicrobial agents than initial preparation ethacridine. Ethacridine derivatives were not only effective against numerous gram-positive and some gram-negative bacteria, but the spectrum of action has been discovered against fungi. Minimal fungistatic concentration varies in the range l0.0–750 µg/mL and antibacterial concentration is in the range 62.5–l000 µg/mL. Compound 2a having nitrofuryl substituent in the fifth position of tiazolidine cycle was the most active of synthesized ethacridine compounds. The obtained results gave the opportunity to separate the perspective group of potential antiinfective compounds.


2017 ◽  
Vol 61 (7) ◽  
Author(s):  
Tatiana Y. Hargrove ◽  
Edward P. Garvey ◽  
William J. Hoekstra ◽  
Christopher M. Yates ◽  
Zdzislaw Wawrzak ◽  
...  

ABSTRACT Within the past few decades, the incidence and complexity of human fungal infections have increased, and therefore, the need for safer and more efficient, broad-spectrum antifungal agents is high. In the study described here, we characterized the new tetrazole-based drug candidate VT-1598 as an inhibitor of sterol 14α-demethylase (CYP51B) from the filamentous fungus Aspergillus fumigatus. VT-1598 displayed a high affinity of binding to the enzyme in solution (dissociation constant, 13 ± 1 nM) and in the reconstituted enzymatic reaction was revealed to have an inhibitory potency stronger than the potencies of all other simultaneously tested antifungal drugs, including fluconazole, voriconazole, ketoconazole, and posaconazole. The X-ray structure of the VT-1598/A. fumigatus CYP51 complex was determined and depicts the distinctive binding mode of the inhibitor in the enzyme active site, suggesting the molecular basis of the improved drug potency and broad-spectrum antifungal activity. These data show the formation of an optimized hydrogen bond between the phenoxymethyl oxygen of VT-1598 and the imidazole ring nitrogen of His374, the CYP51 residue that is highly conserved across fungal pathogens and fungus specific. Comparative structural analysis of A. fumigatus CYP51/voriconazole and Candida albicans CYP51/VT-1161 complexes supports the role of H bonding in fungal CYP51/inhibitor complexes and emphasizes the importance of an optimal distance between this interaction and the inhibitor-heme iron interaction. Cellular experiments using two A. fumigatus strains (strains 32820 and 1022) displayed a direct correlation between the effects of the drugs on CYP51B activity and fungal growth inhibition, indicating the noteworthy anti-A. fumigatus potency of VT-1598 and confirming its promise as a broad-spectrum antifungal agent.


2021 ◽  
Vol 1 (1) ◽  
pp. 22-29
Author(s):  
Siti Nur Amalina Mohamad Sukri ◽  
Kamyar Shameli ◽  
Teow Sin-Yeang ◽  
Nur Afini Ismail

Fungal infections are affecting millions of people in the world every year. Severity of infections range from superficial mycoses to more chronic systemic mycoses. As more fungi species evolve, emergence of drug resistant strains is becoming a serious concern to the public health. There is now less number of effective antifungal drugs available in the market for treatment of invasive fungal infections. In an effort to combat this escalating issue, the use of nanoparticles as antifungal agent has been proposed and explored. Versatility of nanoparticles and its unique physico-chemical properties are proven beneficial for developing new therapeutic methods in treatment of fungal infections. Nanoparticles produced from biological synthesis have attracted keen interests from researchers, as they are more environmentally friendly, sustainable, cost-effective, and biocompatible. This mini review will provide an insight on the current antifungal studies and discuss the theory behind mechanism of actions of nanoparticles.


Author(s):  
Ramya Ravindhiran ◽  
Ramya Krishnamurthy ◽  
Karthiga Sivarajan ◽  
JothiNayaki Sekar ◽  
Kumarappan Chidambaram ◽  
...  

Fungal infections are more predominant in agricultural and clinical fields. Aspergillosis caused by Aspergillus fumigatus leads to respiratory failure in patients along with various illnesses. Due to the limitation of antifungal therapy and antifungal drugs, there is an emergence to develop efficient antifungal compounds from natural sources to cure and prevent fungal infections. The present study deals with the investigation of the mechanism of active compounds from our candidate agonist Aspergillus giganteus for aspergillosis. The integrity of treated Aspergillus fumigatus cell membrane and nuclear membrane was analyzed by determining the release of cellular materials. The antagonistic potential of antifungal compounds on the pathogen was confirmed by SEM analysis. The effective concentration of antifungal compounds (AFCs) was found to be 250µg/ml. The GC-MS profiling has revealed the bioactive metabolites responsible for the antagonistic nature of Aspergillus giganteus. The bioavailability and toxicological properties of pathogenesis related proteins have proved the efficiency of pharmacokinetic properties of selected compounds. Interaction of sarcin, thionin, chitinase and its derivatives from Aspergillus giganteus with the virulence proteins of UDP-N-acetylglucosamine pyrophosphorylase, N-myristoyl transferase and Chitinase have proved the druggable nature of the antifungal compounds.


Sign in / Sign up

Export Citation Format

Share Document