scholarly journals Origins of Scaling Laws in Microbial Dynamics

2021 ◽  
Author(s):  
Xu-Wen Wang ◽  
Yang-Yu Liu

Analysis of high-resolution time series data from the human and mouse gut microbiomes revealed that the gut microbial dynamics can be characterized by several robust and simple scaling laws. It is still unknown if those scaling laws are universal across different body sites, host species, or even free-living microbial communities. Moreover, the underlying mechanisms responsible for those scaling laws remain poorly understood. Here, we demonstrate that those scaling laws are not unique to gut microbiome, but universal across different habitats, from human skin and oral microbiome to marine plankton bacteria and eukarya communities. Since completely shuffled time series yield very similar scaling laws, we conjecture that the universal scaling laws in various microbiomes are largely driven by temporal stochasticity of the host or environmental factors. We leverage a simple population dynamics model with both deterministic inter-species interactions and stochastic noise to confirm our conjecture. In particular, we find that those scaling laws are jointly determined by inter-species interactions and linear multiplicative noises. The presented results deepen our understanding of the nature of scaling laws in microbial dynamics.

2013 ◽  
Vol 280 (1768) ◽  
pp. 20131389 ◽  
Author(s):  
Jiqiu Li ◽  
Andy Fenton ◽  
Lee Kettley ◽  
Phillip Roberts ◽  
David J. S. Montagnes

We propose that delayed predator–prey models may provide superficially acceptable predictions for spurious reasons. Through experimentation and modelling, we offer a new approach: using a model experimental predator–prey system (the ciliates Didinium and Paramecium ), we determine the influence of past-prey abundance at a fixed delay (approx. one generation) on both functional and numerical responses (i.e. the influence of present : past-prey abundance on ingestion and growth, respectively). We reveal a nonlinear influence of past-prey abundance on both responses, with the two responding differently. Including these responses in a model indicated that delay in the numerical response drives population oscillations, supporting the accepted (but untested) notion that reproduction, not feeding, is highly dependent on the past. We next indicate how delays impact short- and long-term population dynamics. Critically, we show that although superficially the standard (parsimonious) approach to modelling can reasonably fit independently obtained time-series data, it does so by relying on biologically unrealistic parameter values. By contrast, including our fully parametrized delayed density dependence provides a better fit, offering insights into underlying mechanisms. We therefore present a new approach to explore time-series data and a revised framework for further theoretical studies.


2021 ◽  
Author(s):  
Xu-Wen Wang ◽  
Yang-Yu Liu

AbstractMany studies have revealed that both host and environmental factors can impact the gut microbial compositions, implying that the gut microbiota is considerably dynamic1–5. In their Article, Ji et al.6 performed comprehensive analysis of multiple high-resolution time series data of human and mouse gut microbiota. They found that both human and mouse gut microbiota dynamics can be characterized by several robust scaling laws describing short- and long-term changes in gut microbiota abundances, distributions of species residence and return times, and the correlation between the mean and the temporal variance of species abundances. They claimed that those scaling laws characterize both short- and long-term dynamics of gut microbiota. However, we are concerned that their interpretation is quite misleading, because all the scaling laws can be reproduced by the shuffled time series with completely randomized time stamps of the microbiome samples.


2016 ◽  
Vol 283 (1822) ◽  
pp. 20152258 ◽  
Author(s):  
Ethan R. Deyle ◽  
Robert M. May ◽  
Stephan B. Munch ◽  
George Sugihara

Evidence shows that species interactions are not constant but change as the ecosystem shifts to new states. Although controlled experiments and model investigations demonstrate how nonlinear interactions can arise in principle, empirical tools to track and predict them in nature are lacking. Here we present a practical method, using available time-series data, to measure and forecast changing interactions in real systems, and identify the underlying mechanisms. The method is illustrated with model data from a marine mesocosm experiment and limnologic field data from Sparkling Lake, WI, USA. From simple to complex, these examples demonstrate the feasibility of quantifying, predicting and understanding state-dependent, nonlinear interactions as they occur in situ and in real time—a requirement for managing resources in a nonlinear, non-equilibrium world.


2017 ◽  
Vol 284 (1855) ◽  
pp. 20170768 ◽  
Author(s):  
Otso Ovaskainen ◽  
Gleb Tikhonov ◽  
David Dunson ◽  
Vidar Grøtan ◽  
Steinar Engen ◽  
...  

Estimation of intra- and interspecific interactions from time-series on species-rich communities is challenging due to the high number of potentially interacting species pairs. The previously proposed sparse interactions model overcomes this challenge by assuming that most species pairs do not interact. We propose an alternative model that does not assume that any of the interactions are necessarily zero, but summarizes the influences of individual species by a small number of community-level drivers. The community-level drivers are defined as linear combinations of species abundances, and they may thus represent e.g. the total abundance of all species or the relative proportions of different functional groups. We show with simulated and real data how our approach can be used to compare different hypotheses on community structure. In an empirical example using aquatic microorganisms, the community-level drivers model clearly outperformed the sparse interactions model in predicting independent validation data.


2013 ◽  
Author(s):  
Stephen J. Tueller ◽  
Richard A. Van Dorn ◽  
Georgiy Bobashev ◽  
Barry Eggleston

Author(s):  
Rizki Rahma Kusumadewi ◽  
Wahyu Widayat

Exchange rate is one tool to measure a country’s economic conditions. The growth of a stable currency value indicates that the country has a relatively good economic conditions or stable. This study has the purpose to analyze the factors that affect the exchange rate of the Indonesian Rupiah against the United States Dollar in the period of 2000-2013. The data used in this study is a secondary data which are time series data, made up of exports, imports, inflation, the BI rate, Gross Domestic Product (GDP), and the money supply (M1) in the quarter base, from first quarter on 2000 to fourth quarter on 2013. Regression model time series data used the ARCH-GARCH with ARCH model selection indicates that the variables that significantly influence the exchange rate are exports, inflation, the central bank rate and the money supply (M1). Whereas import and GDP did not give any influence.


2016 ◽  
Vol 136 (3) ◽  
pp. 363-372
Author(s):  
Takaaki Nakamura ◽  
Makoto Imamura ◽  
Masashi Tatedoko ◽  
Norio Hirai

2020 ◽  
Vol 17 (3) ◽  
pp. 1
Author(s):  
Angkana Pumpuang ◽  
Anuphao Aobpaet

The land deformation in line of sight (LOS) direction can be measured using time series InSAR. InSAR can successfully measure land subsidence based on LOS in many big cities, including the eastern and western regions of Bangkok which is separated by Chao Phraya River. There are differences in prosperity between both sides due to human activities, land use, and land cover. This study focuses on the land subsidence difference between the western and eastern regions of Bangkok and the most possible cause affecting the land subsidence rates. The Radarsat-2 single look complex (SLC) was used to set up the time series data for long term monitoring. To generate interferograms, StaMPS for Time Series InSAR processing was applied by using the PSI algorithm in DORIS software. It was found that the subsidence was more to the eastern regions of Bangkok where the vertical displacements were +0.461 millimetres and -0.919 millimetres on the western and the eastern side respectively. The districts of Nong Chok, Lat Krabang, and Khlong Samwa have the most extensive farming area in eastern Bangkok. Besides, there were also three major industrial estates located in eastern Bangkok like Lat Krabang, Anya Thani and Bang Chan Industrial Estate. By the assumption of water demand, there were forty-eight wells and three wells found in the eastern and western part respectively. The number of groundwater wells shows that eastern Bangkok has the demand for water over the west, and the pumping of groundwater is a significant factor that causes land subsidence in the area.Keywords: Subsidence, InSAR, Radarsat-2, Bangkok


Sign in / Sign up

Export Citation Format

Share Document