scholarly journals Chimeric RNA:DNA Donorguide Improves HDR in vitro and in vivo

2021 ◽  
Author(s):  
Brandon W Simone ◽  
Han B Lee ◽  
Camden L Daby ◽  
Santiago Restrepo-Castillo ◽  
Hirotaka Ata ◽  
...  

Introducing small genetic changes to study specific mutations or reverting clinical mutations to wild type has been an area of interest in precision genomics for several years. In fact, it has been found that nearly 90% of all human pathogenic mutations are caused by small genetic variations, and the methods to efficiently and precisely correct these errors are critically important. One common way to make these small DNA changes is to provide a single stranded DNA (ssDNA) donor containing the desired alteration together with a targeted double-strand break (DSB) at the genomic target. The donor is typically flanked by regions of homology that are often ~30-100bp in length to leverage the homology directed repair (HDR) pathway. Coupling a ssDNA donor with a CRISPR-Cas9 to produce a targeted DSB is one of the most streamlined approaches to introduce small changes. However, in many cell types this approach results in a low rate of incorporation of the desired alteration and has undesired imprecise repair at the 5' or 3' junction due to artifacts of the DNA repair process. We herein report a technology that couples the spatial temporal localization of an ssDNA repair template and leverages the nucleic acid components of the CRISPR-Cas9 system. We show that by direct fusion of an ssDNA template to the trans activating RNA (tracrRNA) to generate an RNA-DNA chimera, termed Donorguide, we recover precise integration of genetic alterations, with both increased integration rates and decreased imprecision at the 5' or 3' junctions relative to an ssODN donor in vitro in HEK293T cells as well as in vivo in zebrafish. Further, we show that this technology can be used to enhance gene conversion with other gene editing tools such as TALENs.

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii19-ii19
Author(s):  
Anca Mihalas ◽  
Heather Feldman ◽  
Anoop Patel ◽  
Patrick Paddison

Abstract Current standard of care therapy for glioblastoma (GBM) includes cytoreduction followed by ablative therapies that target rapidly dividing cell types. However, the presence of quiescent-like/G0 states, therefore, represents a natural reservoir of tumor cells that are resistant to current treatments. Quiescence or G0 phase is a reversible state of “stasis” cells enter in response to developmental or environmental cues. To gain insight into how glioblastoma cells might regulate G0-like states, we performed a genome-wide CRISPR-Cas9 screen in patient-derived GBM stem-like cells (GSCs) harboring a G0-reporter to identify genes that when inhibited trap GSCs in G0-like states. Among the top screen hits were members of the Tip60/KAT5 histone acetyltransferase complex, which targets both histones (e.g., H4) and non-histone proteins for acetylation. NuA4 functions as a transcriptional activator, whose activities are coordinated with MYC in certain contexts, and also participates in DNA double-strand break repair by facilitating chromatin opening. However, currently little is known about the roles for NuA4 complex in GBM biology. Through modeling KAT5 function in GSC in vitro cultures and in vivo tumors, we find that KAT5 inhibition causes cells to arrest in a G0-like state with high p27 levels, G1-phase DNA content, low protein synthesis rates, low rRNA rates, lower metabolic rate, suppression of cell cycle gene expression, and low histone H4 acetylation. Interestingly, partial inhibition of KAT5 activity slows highly aggressive tumor growth, while increasing p27hi H4-aclow populations. Remarkably, we that low grade gliomas have significantly higher H4-aclow subpopulations and generally lower H4-ac levels than aggressive grade IV tumors. Taken together, our results suggest that NuA4/KAT5 activity may play a key role in quiescence ingress/egress in glioma and that targeting its activity in high grade tumors may effectively “down grade” them, thus, increase patient survival.


2019 ◽  
Vol 20 (21) ◽  
pp. 5433 ◽  
Author(s):  
Daniela Gois Beghini ◽  
Samuel Iwao Horita ◽  
Liana Monteiro da Fonseca Cardoso ◽  
Luiz Anastacio Alves ◽  
Kanneboyina Nagaraju ◽  
...  

Muscular dystrophies (MD) are a group of genetic diseases that lead to skeletal muscle wasting and may affect many organs (multisystem). Unfortunately, no curative therapies are available at present for MD patients, and current treatments mainly address the symptoms. Thus, stem-cell-based therapies may present hope for improvement of life quality and expectancy. Different stem cell types lead to skeletal muscle regeneration and they have potential to be used for cellular therapies, although with several limitations. In this review, we propose a combination of genetic, biochemical, and cell culture treatments to correct pathogenic genetic alterations and to increase proliferation, dispersion, fusion, and differentiation into new or hybrid myotubes. These boosted stem cells can also be injected into pretreate recipient muscles to improve engraftment. We believe that this combination of treatments targeting the limitations of stem-cell-based therapies may result in safer and more efficient therapies for MD patients. Matricryptins have also discussed.


2013 ◽  
Vol 41 (6) ◽  
pp. 1401-1406 ◽  
Author(s):  
Tautvydas Karvelis ◽  
Giedrius Gasiunas ◽  
Virginijus Siksnys

The ternary Cas9–crRNA–tracrRNA complex (Cas9t) of the Type II CRISPR (clustered regularly interspaced short palindromic repeats)–Cas (CRISPR-associated) system functions as an Mg2+-dependent RNA-directed DNA endonuclease that locates its DNA target guided by the crRNA (CRISPR RNA) in the tracrRNA–crRNA structure and introduces a double-strand break at a specific site in DNA. The simple modular organization of Cas9t, where specificity for the DNA target is encoded by a small crRNA and the cleavage reaction is executed by the Cas9 endonuclease, provides a versatile platform for the engineering of universal RNA-directed DNA endonucleases. By altering the crRNA sequence within the Cas9t complex, programmable endonucleases can be designed for both in vitro and in vivo applications. Cas9t has been recently employed as a gene-editing tool in various eukaryotic cell types. Using Streptococcus thermophilus Cas9t as a model system, we demonstrate the feasibility of Cas9t as a programmable molecular tool for in vitro DNA manipulations.


2021 ◽  
Vol 23 (2) ◽  
pp. 175-186
Author(s):  
Alexander V. Moskalev ◽  
Boris Yu. Gumilevsky ◽  
Vasiliy Ya. Apchel ◽  
Vasiliy N. Cygan

The problems of organ and tissue transplantation are the lack of organs for transplantation and the rejection of transplants. Therefore, the issue of obtaining organs and tissues for transplantation with stem cells is being studied. Although this idea is promising, it is associated with many problems. To do this, you need to use several populations of cells on a substrate with a complex composition of nutrient environments: nutrients, growth factors, oxygen, regulatory factors. Intercellular interaction is provided by the factors they secrete, or it occurs directly with intercellular contact. This contributes to the fact that stem cells in test tubes can differentiate into other types of tissues and maintain their biological activity indefinitely, which they cannot in vivo. This approach of tissue engineering provides the possibility of obtaining whole organs for implantation. However, technical problems are associated with increased cell adhesion to plastic, the presence of a universal basis for cell nutrition, which can contain more than 100 components. There is a possibility of contamination, which can lead to serious errors in the experiment. Stem cells must have distinct mutational properties and the ability to restore telome cells. Prolonged use of the same nutrient medium can lead to genetic changes and significantly alter the physiological properties of cells. Cryopreservation can be an important aspect of the solution. The goal of tissue bioengineering is to create whole artificial organs, or at least areas of organized tissue that could be transplanted to patients. Currently, such operations are relatively simple for tissues such as artificial skin consisting of epidermal and fibroblast layers, or small cartilage implants obtained in vitro. Several cell types in stable shape are planned to be used in one environment. In this case, one type of cell can be replaced by another. This stability is provided by a variety of secreted factors by different types of cells that ensure their vitality. Decellularization removes all components involved in immune rejection of grafts, so this raises the prospect of creating an unlimited supply of organs for transplantation. However, acute reactions can develop associated with the participation of dendritic cells, macrophages, neutrophils, natural killers. Starting from the moment of transplantation, conditions for immune rejection are created, arising as a result of surgery with the development of acute inflammation. The intensity of immune reactions against the graft largely depends on the degree of non-conformity of alleles of the main complex of histocompany capacity of the donor and recipient. This match is studied using a variety of methods, including the use of antibodies or sequencing of deoxyribonucleic acid.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


2018 ◽  
Vol 18 (4) ◽  
pp. 246-255 ◽  
Author(s):  
Lara Termini ◽  
Enrique Boccardo

In vitro culture of primary or established cell lines is one of the leading techniques in many areas of basic biological research. The use of pure or highly enriched cultures of specific cell types obtained from different tissues and genetics backgrounds has greatly contributed to our current understanding of normal and pathological cellular processes. Cells in culture are easily propagated generating an almost endless source of material for experimentation. Besides, they can be manipulated to achieve gene silencing, gene overexpression and genome editing turning possible the dissection of specific gene functions and signaling pathways. However, monolayer and suspension cultures of cells do not reproduce the cell type diversity, cell-cell contacts, cell-matrix interactions and differentiation pathways typical of the three-dimensional environment of tissues and organs from where they were originated. Therefore, different experimental animal models have been developed and applied to address these and other complex issues in vivo. However, these systems are costly and time consuming. Most importantly the use of animals in scientific research poses moral and ethical concerns facing a steadily increasing opposition from different sectors of the society. Therefore, there is an urgent need for the development of alternative in vitro experimental models that accurately reproduce the events observed in vivo to reduce the use of animals. Organotypic cultures combine the flexibility of traditional culture systems with the possibility of culturing different cell types in a 3D environment that reproduces both the structure and the physiology of the parental organ. Here we present a summarized description of the use of epithelial organotypic for the study of skin physiology, human papillomavirus biology and associated tumorigenesis.


2021 ◽  
Vol 22 (4) ◽  
pp. 1514 ◽  
Author(s):  
Akihiro Yachie

Since Yachie et al. reported the first description of human heme oxygenase (HO)-1 deficiency more than 20 years ago, few additional human cases have been reported in the literature. A detailed analysis of the first human case of HO-1 deficiency revealed that HO-1 is involved in the protection of multiple tissues and organs from oxidative stress and excessive inflammatory reactions, through the release of multiple molecules with anti-oxidative stress and anti-inflammatory functions. HO-1 production is induced in vivo within selected cell types, including renal tubular epithelium, hepatic Kupffer cells, vascular endothelium, and monocytes/macrophages, suggesting that HO-1 plays critical roles in these cells. In vivo and in vitro studies have indicated that impaired HO-1 production results in progressive monocyte dysfunction, unregulated macrophage activation and endothelial cell dysfunction, leading to catastrophic systemic inflammatory response syndrome. Data from reported human cases of HO-1 deficiency and numerous studies using animal models suggest that HO-1 plays critical roles in various clinical settings involving excessive oxidative stress and inflammation. In this regard, therapy to induce HO-1 production by pharmacological intervention represents a promising novel strategy to control inflammatory diseases.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 630
Author(s):  
Huili Lyu ◽  
Cody M. Elkins ◽  
Jessica L. Pierce ◽  
C. Henrique Serezani ◽  
Daniel S. Perrien

Excess inflammation and canonical BMP receptor (BMPR) signaling are coinciding hallmarks of the early stages of injury-induced endochondral heterotopic ossification (EHO), especially in the rare genetic disease fibrodysplasia ossificans progressiva (FOP). Multiple inflammatory signaling pathways can synergistically enhance BMP-induced Smad1/5/8 activity in multiple cell types, suggesting the importance of pathway crosstalk in EHO and FOP. Toll-like receptors (TLRs) and IL-1 receptors mediate many of the earliest injury-induced inflammatory signals largely via MyD88-dependent pathways. Thus, the hypothesis that MyD88-dependent signaling is required for EHO was tested in vitro and in vivo using global or Pdgfrα-conditional deletion of MyD88 in FOP mice. As expected, IL-1β or LPS synergistically increased Activin A (ActA)-induced phosphorylation of Smad 1/5 in fibroadipoprogenitors (FAPs) expressing Alk2R206H. However, conditional deletion of MyD88 in Pdgfrα-positive cells of FOP mice did not significantly alter the amount of muscle injury-induced EHO. Even more surprisingly, injury-induced EHO was not significantly affected by global deletion of MyD88. These studies demonstrate that MyD88-dependent signaling is dispensable for injury-induced EHO in FOP mice.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Lourdes G. Talavera-Aguilar ◽  
Reyes A. Murrieta ◽  
Sungmin Kiem ◽  
Rosa C. Cetina-Trejo ◽  
Carlos M. Baak-Baak ◽  
...  

Abstract Background Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) with an urban transmission cycle that primarily involves humans and Aedes aegypti. Evidence suggests that the evolution of some arboviruses is constrained by their dependency on alternating between disparate (vertebrate and invertebrate) hosts. The goals of this study are to compare the genetic changes that occur in ZIKV after serial passaging in mosquito or vertebrate cell lines or alternate passaging in both cell types and to compare the replication, dissemination, and transmission efficiencies of the cell culture-derived viruses in Ae. aegypti. Methods An isolate of ZIKV originally acquired from a febrile patient in Yucatan, Mexico, was serially passaged six times in African green monkey kidney (Vero) cells or Aedes albopictus (C6/36) cells or both cell types by alternating passage. A colony of Ae. aegypti from Yucatan was established, and mosquitoes were challenged with the cell-adapted viruses. Midguts, Malpighian tubules, ovaries, salivary glands, wings/legs and saliva were collected at various times after challenge and tested for evidence of virus infection. Results Genome sequencing revealed the presence of two non-synonymous substitutions in the premembrane and NS1 regions of the mosquito cell-adapted virus and two non-synonymous substitutions in the capsid and NS2A regions of both the vertebrate cell-adapted and alternate-passaged viruses. Additional genetic changes were identified by intrahost variant frequency analysis. Virus maintained by continuous C6/36 cell passage was significantly more infectious in Ae. aegypti than viruses maintained by alternating passage and consecutive Vero cell passage. Conclusions Mosquito cell-adapted ZIKV displayed greater in vivo fitness in Ae. aegypti compared to the other viruses, indicating that obligate cycling between disparate hosts carries a fitness cost. These data increase our understanding of the factors that drive ZIKV adaptation and evolution and underscore the important need to consider the in vivo passage histories of flaviviruses to be evaluated in vector competence studies. Graphic abstract "Image missing"


Author(s):  
Thomas R. Reich ◽  
Christian Schwarzenbach ◽  
Juliana Brandstetter Vilar ◽  
Sven Unger ◽  
Fabian Mühlhäusler ◽  
...  

AbstractTo clarify whether differential compartmentalization of Survivin impacts temozolomide (TMZ)-triggered end points, we established a well-defined glioblastoma cell model in vitro (LN229 and A172) and in vivo, distinguishing between its nuclear and cytoplasmic localization. Expression of nuclear export sequence (NES)-mutated Survivin (SurvNESmut-GFP) led to impaired colony formation upon TMZ. This was not due to enhanced cell death but rather due to increased senescence. Nuclear-trapped Survivin reduced homologous recombination (HR)-mediated double-strand break (DSB) repair, as evaluated by γH2AX foci formation and qPCR-based HR assay leading to pronounced induction of chromosome aberrations. Opposite, clones, expressing free-shuttling cytoplasmic but not nuclear-trapped Survivin, could repair TMZ-induced DSBs and evaded senescence. Mass spectrometry-based interactomics revealed, however, no direct interaction of Survivin with any of the repair factors. The improved TMZ-triggered HR activity in Surv-GFP was associated with enhanced mRNA and stabilized RAD51 protein expression, opposite to diminished RAD51 expression in SurvNESmut cells. Notably, cytoplasmic Survivin could significantly compensate for the viability under RAD51 knockdown. Differential Survivin localization also resulted in distinctive TMZ-triggered transcriptional pathways, associated with senescence and chromosome instability as shown by global transcriptome analysis. Orthotopic LN229 xenografts, expressing SurvNESmut exhibited diminished growth and increased DNA damage upon TMZ, as manifested by PCNA and γH2AX foci expression, respectively, in brain tissue sections. Consequently, those mice lived longer. Although tumors of high-grade glioma patients expressed majorly nuclear Survivin, they exhibited rarely NES mutations which did not correlate with survival. Based on our in vitro and xenograft data, Survivin nuclear trapping would facilitate glioma response to TMZ.


Sign in / Sign up

Export Citation Format

Share Document