scholarly journals Fuzzy RNA-recognition by the Trypanosoma brucei editosome

2021 ◽  
Author(s):  
H. Ulrich Göringer ◽  
W.-Matthias Leeder

The recognition of RNA-molecules by proteins and protein complexes is a critical step on all levels of gene expression. Typically, the generated ribonucleoprotein complexes rely on the binary interaction of defined RNA-sequences or precisely folded RNA-motifs with dedicated RNA-binding domains on the protein side. Here we describe a new molecular recognition principle of RNA-molecules by a high molecular mass protein complex. By chemically probing the solvent accessibility of mitochondrial pre-mRNAs when bound to the Trypanosoma brucei editosome we identified multiple similar but non-identical RNA-motifs as editosome contact sites. However, by treating the different motifs as mathematical graph objects we demonstrate that they fit a consensus 2D-graph consisting of 4 vertices (V) and 3 edges (E) with a Laplacian eigenvalue of 0.523 (λ2). We establish that a synthetic 4V(3E)-RNA is sufficient to compete for the editosomal pre-mRNA binding site and that it is able to inhibit RNA-editing in vitro. Our analysis corroborates that the editosome has adapted to the structural multiplicity of the mitochondrial mRNA-folding space by recognizing a fuzzy continuum of RNA-folds that fit a consensus graph-descriptor. This provides a mechanism on how the protein complex is able to bind the structurally pleomorphic pool of pre- and partially edited mRNAs. We speculate that other fuzzy RNA-recognition motifs exist especially for proteins that interact with multiple RNA-species.

1998 ◽  
Vol 18 (10) ◽  
pp. 6014-6022 ◽  
Author(s):  
Thomas E. Allen ◽  
Stefan Heidmann ◽  
RoseMary Reed ◽  
Peter J. Myler ◽  
H. Ulrich Göringer ◽  
...  

ABSTRACT RNA editing in Trypanosoma brucei mitochondria produces mature mRNAs by a series of enzyme-catalyzed reactions that specifically insert or delete uridylates in association with a macromolecular complex. Using a mitochondrial fraction enriched for in vitro RNA editing activity, we produced several monoclonal antibodies that are specific for a 21-kDa guide RNA (gRNA) binding protein initially identified by UV cross-linking. Immunofluorescence studies localize the protein to the mitochondrion, with a preference for the kinetoplast. The antibodies cause a supershift of previously identified gRNA-specific ribonucleoprotein complexes and immunoprecipitate in vitro RNA editing activities that insert and delete uridylates. The immunoprecipitated material also contains gRNA-specific endoribonuclease, terminal uridylyltransferase, and RNA ligase activities as well as gRNA and both edited and unedited mRNA. The immunoprecipitate contains numerous proteins, of which the 21-kDa protein, a 90-kDa protein, and novel 55- and 16-kDa proteins can be UV cross-linked to gRNA. These studies indicate that the 21-kDa protein associates with the ribonucleoprotein complex (or complexes) that catalyze RNA editing.


2021 ◽  
Author(s):  
Christine Roden ◽  
Yifan Dai ◽  
Ian Seim ◽  
Myungwoon Lee ◽  
Rachel Sealfon ◽  
...  

Betacoronavirus SARS-CoV-2 infections caused the global Covid-19 pandemic. The nucleocapsid protein (N-protein) is required for multiple steps in the betacoronavirus replication cycle. SARS-CoV-2-N-protein is known to undergo liquid-liquid phase separation (LLPS) with specific RNAs at particular temperatures to form condensates. We show that N-protein recognizes at least two separate and distinct RNA motifs, both of which require double-stranded RNA (dsRNA) for LLPS. These motifs are separately recognized by N-protein's two RNA binding domains (RBDs). Addition of dsRNA accelerates and modifies N-protein LLPS in vitro and in cells and controls the temperature condensates form. The abundance of dsRNA tunes N-protein-mediated translational repression and may confer a switch from translation to genome packaging. Thus, N-protein's two RBDs interact with separate dsRNA motifs, and these interactions impart distinct droplet properties that can support multiple viral functions. These experiments demonstrate a paradigm of how RNA structure can control the properties of biomolecular condensates.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1473
Author(s):  
Mohamed Zaiou

Circular RNAs (circRNAs) are genome transcripts that are produced from back-splicing of specific regions of pre-mRNA. These single-stranded RNA molecules are widely expressed across diverse phyla and many of them are stable and evolutionary conserved between species. Growing evidence suggests that many circRNAs function as master regulators of gene expression by influencing both transcription and translation processes. Mechanistically, circRNAs are predicted to act as endogenous microRNA (miRNA) sponges, interact with functional RNA-binding proteins (RBPs), and associate with elements of the transcriptional machinery in the nucleus. Evidence is mounting that dysregulation of circRNAs is closely related to the occurrence of a range of diseases including cancer and metabolic diseases. Indeed, there are several reports implicating circRNAs in cardiovascular diseases (CVD), diabetes, hypertension, and atherosclerosis. However, there is very little research addressing the potential role of these RNA transcripts in the occurrence and development of obesity. Emerging data from in vitro and in vivo studies suggest that circRNAs are novel players in adipogenesis, white adipose browning, obesity, obesity-induced inflammation, and insulin resistance. This study explores the current state of knowledge on circRNAs regulating molecular processes associated with adipogenesis and obesity, highlights some of the challenges encountered while studying circRNAs and suggests some perspectives for future research directions in this exciting field of study.


2002 ◽  
Vol 22 (13) ◽  
pp. 4652-4660 ◽  
Author(s):  
Jorge Cruz-Reyes ◽  
Alevtina G. Zhelonkina ◽  
Catherine E. Huang ◽  
Barbara Sollner-Webb

ABSTRACT Trypanosome RNA editing is a unique U insertion and U deletion process that involves cycles of pre-mRNA cleavage, terminal U addition or U removal, and religation. This editing can occur at massive levels and is directed by base pairing of trans-acting guide RNAs. Both U insertion and U deletion cycles are catalyzed by a single protein complex that contains only seven major proteins, band I through band VII. However, little is known about their catalytic functions, except that band IV and band V are RNA ligases and genetic analysis indicates that the former is important in U deletion. Here we establish biochemical approaches to distinguish the individual roles of these ligases, based on their distinctive ATP and pyrophosphate utilization. These in vitro analyses revealed that both ligases serve in RNA editing. Band V is the RNA editing ligase that functions very selectively to seal in U insertion (IREL), while band IV is the RNA editing ligase needed to seal in U deletion (DREL). In combination with our earlier findings about the cleavage and the U-addition/U-removal steps of U deletion and U insertion, these results show that all three steps of these editing pathways exhibit major differences and suggest that the editing complex could have physically separate regions for U deletion and U insertion.


1996 ◽  
Vol 16 (4) ◽  
pp. 1410-1418 ◽  
Author(s):  
R A Corell ◽  
L K Read ◽  
G R Riley ◽  
J K Nellissery ◽  
T E Allen ◽  
...  

Transcripts from many mitochondrial genes in kinetoplastids undergo RNA editing, a posttranscriptional process which inserts and deletes uridines. By assaying for deletion editing in vitro, we found that the editing activity from Trypanosoma brucei mitochondrial lysates (S.D. Seiwert and K.D. Stuart), Science 266:114-117,1994) sediments with a peak of approximately 20S. RNA helicase, terminal uridylyl transferase, RNA ligase, and adenylation activities, which may have a role in editing, cosediment in a broad distribution, with most of each activity at 35 to 40S. Most ATPase 6 (A6) guide RNA and unedited A6 mRNA sediments at 20 to 30S, with some sedimenting further into the gradient, while most edited A6 mRNA sediments at >35S. Several mitochondrial proteins which cross-link specifically with guide RNA upon UV treatment also sediment in glycerol gradients. Notably, a 65-kDa protein sediments primarily at approximately 20S, a 90-kDa protein sediments at 35 to 40S, and a 25-kDa protein is present at <10S. Most ribonucleoprotein complexes that form with gRNA in vitro sediment at 10 to 20S, except for one, which sediments at 30 to 45S. These results suggest that RNA editing takes place within a multicomponent complex. The potential functions of and relationships between the 20S and 35 to 40S complexes are discussed.


Open Biology ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 160159 ◽  
Author(s):  
Luis Miguel De Pablos ◽  
Steve Kelly ◽  
Janaina de Freitas Nascimento ◽  
Jack Sunter ◽  
Mark Carrington

The fate of an mRNA is determined by its interaction with proteins and small RNAs within dynamic complexes called ribonucleoprotein complexes (mRNPs). In Trypanosoma brucei and related kinetoplastids, responses to internal and external signals are mainly mediated by post-transcriptional processes. Here, we used proximity-dependent biotin identification (BioID) combined with RNA-seq to investigate the changes resulting from ectopic expression of RBP10 and RBP9, two developmentally regulated RNA-binding proteins (RBPs). Both RBPs have reduced expression in insect procyclic forms (PCFs) compared with bloodstream forms (BSFs). Upon overexpression in PCFs, both proteins were recruited to cytoplasmic foci, co-localizing with the processing body marker SCD6. Further, both RBPs altered the transcriptome from a PCF- to a BSF-like pattern. Notably, upon expression of BirA*-RBP9 and BirA*-RBP10, BioID yielded more than 200 high confidence protein interactors (more than 10-fold enriched); 45 (RBP9) and 31 (RBP10) were directly related to mRNA metabolism. This study validates the use of BioID for investigating mRNP components but also illustrates the complexity of mRNP function.


2020 ◽  
Vol 48 (6) ◽  
pp. 2897-2911 ◽  
Author(s):  
Kwan Yin Lee ◽  
Anand Chopra ◽  
Giovanni L Burke ◽  
Ziyan Chen ◽  
Jack F Greenblatt ◽  
...  

Abstract The Nrd1–Nab3–Sen1 (NNS) complex integrates molecular cues to direct termination of noncoding transcription in budding yeast. NNS is positively regulated by histone methylation as well as through Nrd1 binding to the initiating form of RNA PolII. These cues collaborate with Nrd1 and Nab3 binding to target RNA sequences in nascent transcripts through their RRM RNA recognition motifs. In this study, we identify nine lysine residues distributed amongst Nrd1, Nab3 and Sen1 that are methylated, suggesting novel molecular inputs for NNS regulation. We identify mono-methylation of one these residues (Nab3-K363me1) as being partly dependent on the H3K4 methyltransferase, Set1, a known regulator of NNS function. Moreover, the accumulation of Nab3-K363me1 is essentially abolished in strains lacking SET3, a SET domain containing protein that is positively regulated by H3K4 methylation. Nab3-K363 resides within its RRM and physically contacts target RNA. Mutation of Nab3-K363 to arginine (Nab3-K363R) decreases RNA binding of the Nab3 RRM in vitro and causes transcription termination defects and slow growth. These findings identify SET3 as a potential contextual regulator of Nab3 function through its role in methylation of Nab3-K363. Consistent with this hypothesis, we report that SET3 exhibits genetic activation of NAB3 that is observed in a sensitized context.


2017 ◽  
Vol 37 (21) ◽  
Author(s):  
Peyman P. Aryanpur ◽  
Chelsea A. Regan ◽  
John M. Collins ◽  
Telsa M. Mittelmeier ◽  
David M. Renner ◽  
...  

ABSTRACT DEAD-box proteins (DBPs) are required in gene expression to facilitate changes to ribonucleoprotein complexes, but the cellular mechanisms and regulation of DBPs are not fully defined. Gle1 is a multifunctional regulator of DBPs with roles in mRNA export and translation. In translation, Gle1 modulates Ded1, a DBP required for initiation. However, DED1 overexpression causes defects, suggesting that Ded1 can promote or repress translation in different contexts. Here we show that GLE1 expression suppresses the repressive effects of DED1 in vivo and Gle1 counteracts Ded1 in translation assays in vitro. Furthermore, both Ded1 and Gle1 affect the assembly of preinitiation complexes. Through mutation analysis and binding assays, we show that Gle1 inhibits Ded1 by reducing its affinity for RNA. Our results are consistent with a model wherein active Ded1 promotes translation but inactive or excess Ded1 leads to translation repression. Gle1 can inhibit either role of Ded1, positioning it as a gatekeeper to optimize Ded1 activity to the appropriate level for translation. This study suggests a paradigm for finely controlling the activity of DEAD-box proteins to optimize their function in RNA-based processes. It also positions the versatile regulator Gle1 as a potential node for the coordination of different steps of gene expression.


2014 ◽  
Vol 58 (12) ◽  
pp. 7405-7415 ◽  
Author(s):  
Mary Ellenbecker ◽  
Jean-Marc Lanchy ◽  
J. Stephen Lodmell

ABSTRACTRift Valley fever virus (RVFV) is an emerging infectious pathogen that causes severe disease in humans and livestock and has the potential for global spread. There are currently no proven safe and effective treatment options for RVFV infection. Inhibition of RNA binding to RVFV nucleocapsid protein (N) represents an attractive antiviral therapeutic strategy because several essential steps in the RVFV replication cycle involve N binding to viral RNA. In this study, we demonstrate the therapeutic potential of the drug suramin by showing that it functions well as an inhibitor of RVFV replication at multiple stages in human cell culture. Suramin has been used previously to treat trypanosomiasis in Africa. We characterize the dynamic and cooperative nature of N-RNA binding interactions and the dissociation of high-molecular-mass ribonucleoprotein complexes using suramin, which we previously identified as an N-RNA binding inhibitor in a high-throughput screen. Finally, we elucidate the molecular mechanism used by suraminin vitroto disrupt both specific and nonspecific binding events important for ribonucleoprotein formation.


2018 ◽  
Author(s):  
Marjan Shayegan ◽  
Radin Tahvildari ◽  
Lydia Kisley ◽  
Kimberly Metera ◽  
Stephen W. Michnick ◽  
...  

Biopolymer condensates formed by liquid-liquid phase separation of proteins and nucleic acids have been recently discovered to be prevalent in biology. These dynamic condensates behave like biochemical reaction vessels but little is known about their structural organization and properties. Their biophysical properties and catalytic functions are likely related to condensate size, and thus it is critical that we study them on scales found in vivo. However, previous in vitro studies of condensate assembly and physical properties have involved condensates up to 1000 times larger than those found in vivo. Here, we report the application of confinement microscopy to visualize condensates and control their sizes by creating appropriate confinement length scales relevant to the cell environment. We observe anomalous diffusion of probe particles embedded within confined condensates, as well as heterogeneous dynamics in condensates formed from PEG/dextran and in ribonucleoprotein complexes of RNA and the RNA-binding protein Dhh1. We propose that the non-Gaussian dynamics we observe may indicate a hopping diffusion mechanism inside condensates. We also observe that for dextran-rich condensates, but not for ribonucleo condensates, probe particle diffusion depends on condensate size.


Sign in / Sign up

Export Citation Format

Share Document