scholarly journals High affinity FcγR activating function depends on IRAP+ endosomal-signaling platforms

2021 ◽  
Author(s):  
Samira Benadda ◽  
Mathilde NUGUE ◽  
Marcelle BENS ◽  
Renato Monteiro ◽  
Irini Evnouchidou ◽  
...  

Although endocytosis of cell surface receptors is generally thought to terminate the signaling, for some receptors, endocytosis sustains signaling. We wondered if endosomal signaling participates to the function of the receptors for Fc immunoglobulin fragments (FcRs) that are highly internalized after their activation. We demonstrate here that four different FcRs follow distinct endocytic pathways after activation. While FcαRI is internalized into lysosomes, FcγRIIA is internalized and partially retained in early endosomes, whereas the inhibitory receptor FcγRIIB is internalized in endosomes decorated by the autophagy marker LC3. Interestingly, the high affinity FcγRI is internalized in specialized endosomal compartments described by the Insulin Responsive AminoPeptidase (IRAP), where it remains associated with the active form of the signaling kinase Syk. Our results show that FcγRI has the ability to build endosomal-signaling platforms, which depend on the presence of IRAP and Rab14. Destabilization of the endosomal signaling platforms compromised the ability of peritoneal macrophages to kill tumor cells by antibody-dependent cell mediated cytotoxicity, indicating that FcγRI endosomal signaling is required for the therapeutic action of anti-tumor monoclonal antibodies.

1990 ◽  
Vol 63 (02) ◽  
pp. 193-203 ◽  
Author(s):  
John R Shainoff ◽  
Deborah J Stearns ◽  
Patricia M DiBello ◽  
Youko Hishikawa-Itoh

SummaryThe studies reported here probe the existence of a receptor-mediated mode of fibrin-binding by macrophages that is associated with the chemical change underlying the fibrinogen-fibrin conversion (the release of fibrinopeptides from the amino-terminal domain) without depending on fibrin-aggregation. The question is pursued by 1) characterization of binding in relation to fibrinopeptide content of both the intact protein and the CNBr-fragment comprising the amino-terminal domain known as the NDSK of the protein, 2) tests of competition for binding sites, and 3) photo-affinity labeling of macrophage surface proteins. The binding of intact monomers of types lacking either fibrinopeptide A alone (α-fibrin) or both fibrinopeptides A and B (αβ-fibrin) by peritoneal macrophages is characterized as proceeding through both a fibrin-specific low density/high affinity (BMAX ≃ 200–800 molecules/cell, KD ≃ 10−12 M) interaction that is not duplicated with fibrinogen, and a non-specific high density/low affinity (BMAX ≥ 105 molecules/cell, KD ≥ 10−6 M) interaction equivalent to the weak binding of fibrinogen. Similar binding characteristics are displayed by monocyte/macrophage cell lines (J774A.1 and U937) as well as peritoneal macrophages towards the NDSK preparations of these proteins, except for a slightly weaker (KD ≃ 10−10 M) high-affinity binding. The high affinity binding of intact monomer is inhibitable by fibrin-NDSK, but not fibrinogen-NDSK. This binding appears principally dependent on release of fibrinopeptide-A, because a species of fibrin (β-fibrin) lacking fibrinopeptide-B alone undergoes only weak binding similar to that of fibrinogen. Synthetic Gly-Pro-Arg and Gly-His-Arg-Pro corresponding to the N-termini of to the α- and the β-chains of fibrin both inhibit the high affinity binding of the fibrin-NDSKs, and the cell-adhesion peptide Arg-Gly-Asp does not. Photoaffinity-labeling experiments indicate that polypeptides with elec-trophoretically estimated masses of 124 and 187 kDa are the principal membrane components associated with specifically bound fibrin-NDSK. The binding could not be up-regulated with either phorbol myristyl acetate, interferon gamma or ADP, but was abolished by EDTA and by lipopolysaccharide. Because of the low BMAX, it is suggested that the high-affinity mode of binding characterized here would be too limited to function by itself in scavenging much fibrin, but may act cooperatively with other, less limited modes of fibrin binding.


Blood ◽  
1990 ◽  
Vol 75 (4) ◽  
pp. 874-880 ◽  
Author(s):  
AD D'Andrea ◽  
PJ Szklut ◽  
HF Lodish ◽  
EM Alderman

Abstract We have generated four high affinity monoclonal antibodies (MoAbs) to recombinant human erythropoietin (EPO). All four MoAbs immunoprecipitate radioiodinated native EPO, and the concentrations of MoAbs required for maximum binding range from 10 nmol/L to 100 nmol/L. Two MoAbs, designated Group I MoAbs, bind to an epitope within the N- terminal 20 amino acids of EPO and also immunoprecipitate sodium dodecyl sulfate (SDS)-denatured EPO. Two other MoAbs (Group II MoAbs) do not immunoprecipitate SDS-denatured EPO and do not bind to any of the eight endo C fragments of EPO. We first used murine erythroleukemia (MEL) cells to test the MoAbs for inhibition of EPO-receptor binding. MEL cells, although unresponsive to EPO, express 760 high affinity receptors for EPO per cell (Kd = 0.24 nmol/L). To assay our MoAbs, MEL cells were grown as monolayers on fibronectin-coated Petri dishes and incubated at 4 degrees C with radioiodinated EPO. Group I MoAbs do not inhibit binding of radioiodinated EPO to the MEL EPO-receptor, but Group II MoAbs do inhibit binding in a dose-dependent manner. We next examined the neutralization of EPO bioactivity by our MoAbs, using EPO- dependent cell line. Only Group II MoAbs inhibit a newly developed EPO- dependent cell growth, demonstrating that inhibition of EPO-receptor binding correlates with neutralization of EPO bioactivity.


2000 ◽  
Vol 11 (8) ◽  
pp. 2657-2671 ◽  
Author(s):  
Jean M. Wilson ◽  
Meltsje de Hoop ◽  
Natasha Zorzi ◽  
Ban-Hock Toh ◽  
Carlos G. Dotti ◽  
...  

EEA1 is an early endosomal Rab5 effector protein that has been implicated in the docking of incoming endocytic vesicles before fusion with early endosomes. Because of the presence of complex endosomal pathways in polarized and nonpolarized cells, we have examined the distribution of EEA1 in diverse cell types. Ultrastructural analysis demonstrates that EEA1 is present on a subdomain of the early sorting endosome but not on clathrin-coated vesicles, consistent with a role in providing directionality to early endosomal fusion. Furthermore, EEA1 is associated with filamentous material that extends from the cytoplasmic surface of the endosomal domain, which is also consistent with a tethering/docking role for EEA1. In polarized cells (Madin-Darby canine kidney cells and hippocampal neurons), EEA1 is present on a subset of “basolateral-type” endosomal compartments, suggesting that EEA1 regulates specific endocytic pathways. In both epithelial cells and fibroblastic cells, EEA1 and a transfected apical endosomal marker, endotubin, label distinct endosomal populations. Hence, there are at least two distinct sets of early endosomes in polarized and nonpolarized mammalian cells. EEA1 could provide specificity and directionality to fusion events occurring in a subset of these endosomes in polarized and nonpolarized cells.


1993 ◽  
Vol 264 (2) ◽  
pp. H352-H356 ◽  
Author(s):  
S. M. Hollenberg ◽  
J. H. Shelhamer ◽  
R. E. Cunnion

Endothelin-1 (ET-1), a potent vasoconstrictor peptide released by endothelial cells, binds with high affinity to surface receptors and is highly resistant to dissociation. We observed tachyphylaxis to the pressor effects of a second application of ET-1 in rat aortic rings and investigated the mechanism of this effect. Developed tension increased progressively with doses of ET-1 ranging from 1 to 500 nM (P < 0.001), and tensions with rechallenge were correspondingly decreased (P < 0.001). In response to 500 nM ET-1, tension increased 1,599 +/- 72 (SE) mg/mg ring wt. Rechallenge with 500 nM ET-1 led to contraction of only 33 +/- 40 mg/mg ring wt. Tachyphylaxis was seen up to 6 h after initial challenge. Pretreatment with nicardipine, lidoflazine, nitroglycerin, and sphingosine did not affect tachyphylaxis. Pretreatment with 500 microM dansylcadaverine (an inhibitor of endothelin internalization) markedly inhibited ET-1-induced contraction and also inhibited tachyphylaxis to ET-1. Further studies with radiolabeled ET-1 suggested that subsequent ET-1 binding is markedly decreased after an initial ET-1 challenge. Dansylcadaverine inhibited ET-1 internalization and also inhibited the decreased binding seen with ET-1 rechallenge. Rat aortic rings demonstrate tachyphylaxis to the pressor effect of a second dose of ET-1. The mechanism appears to be related to binding and subsequent internalization of endothelin-receptor complexes. This effect suggests a possible mechanism for sustained decreases in systemic vascular resistance.


Author(s):  
Mizejewski GJ

Disintegrins constitute a group of small proteins or peptides (45-85 amino acids) that function as natural antagonists of integrin receptor-dependent cell activities. The integrins themselves comprise a superfamily of hetero-dimeric (alpha and beta chains) transmembrane cell surface receptors whose functions include cell adhesion, growth, migration, and angiogenesis. In contrast, the disintegrins comprise groups of two types of molecules, namely, a) short proteins or peptides comprising insect and animal venoms; and b) intrinsic sub domain sequence fragments or short motifs present on large mammalian metalloprotease enzymes. Certain disintegrins bind specifically to tri-amino acid sequences (RGD, LGD etc) located on integrins beta-1 and beta-3 chains of the hetero complex receptors. Binding at such sites can inhibit or block cell migration, angiogenesis, metastasis, and platelet aggregation. Recently, small disintegrin-like peptides from naturally-occurring proteins have likewise been reported to inhibit growth and adhesion functions associated with integrin-dependent cell activities. The present report describes examples of such disintegrin-like peptides and provides support for their proposed use in adjunct cancer therapy.


Blood ◽  
2021 ◽  
Author(s):  
Charithani B Keragala ◽  
Robert L Medcalf

Plasminogen is an abundant plasma protein that exists in various zymogenic forms. Plasmin, the proteolytically active form of plasminogen, is known for its essential role in fibrinolysis. The therapeutic targeting of the fibrinolytic system to date has been for two purposes: to promote plasmin generation for thromboembolic conditions, or to stop plasmin to reduce bleeding. However, both plasmin and plasminogen serve other important functions, some of which are unrelated to fibrin removal. Indeed, for over 40 years, the anti-fibrinolytic agent, tranexamic acid, has been administered for its serendipitously discovered skin whitening properties. Plasmin also plays an important role in the removal of misfolded/aggregated proteins and can trigger other enzymatic cascades including complement. In addition, plasminogen, via binding to one of its dozen cell-surface receptors, can modulate cell behaviour and further influence immune and inflammatory processes. Plasminogen administration itself has been reported to improve thrombolysis and to accelerate wound repair. While many of these more recent findings have been derived from in vitro or animal studies, the use of anti-fibrinolytics to reduce bleeding in humans has revealed additional clinically relevant consequences, particularly in relation to reducing infection risk that is independent of its haemostatic effects. The finding that many viruses harness the host plasminogen to aid infectivity has suggested that anti-fibrinolytic agents may have anti-viral benefits. Here we review the broadening role of the plasminogen activating system in physiology and pathophysiology and how manipulation of this system may be harnessed for benefits unrelated to its conventional application in thrombosis and haemostasis.


1999 ◽  
Vol 112 (22) ◽  
pp. 3899-3909 ◽  
Author(s):  
G. Skretting ◽  
M.L. Torgersen ◽  
B. van Deurs ◽  
K. Sandvig

We have here used diphtheria toxin as a tool to investigate the type of endocytosis used by a glycosylphosphatidylinositol-linked molecule, a glycosylphosphatidylinositol-linked version of the diphtheria toxin receptor that is able to mediate intoxication. The receptor is expressed in HeLa cells where clathrin-dependent endocytosis can be blocked by overexpression of mutant dynamin. Diphtheria toxin intoxicates cells by first binding to cell-surface receptors, then the toxin is endocytosed, and upon exposure to low endosomal pH, the toxin enters the cytosol where it inhibits protein synthesis. Inhibition of protein synthesis by the toxin can therefore be used to probe the entry of the glycosylphosphatidylinositol-linked receptor into an acidic compartment. Furthermore, degradation of the toxin can be used as an indicator of entry into the endosomal/lysosomal compartment. The data show that although expression of mutant dynamin inhibits intoxication mediated via the wild-type receptors, mutant dynamin does not affect intoxication or endocytosis and degradation of diphtheria toxin bound to the glycosylphosphatidylinositol-linked receptor. Confocal microscopy demonstrated that diphtheria toxin is transported to vesicles containing EEA1, a marker for early endosomes. Biochemical and ultrastructural studies of the HeLa cells used reveal that they have very low levels of caveolin-1 and that they contain very few if any caveolae at the cell surface. Furthermore, the endocytic uptake of diphtheria toxin bound to the glycosylphosphatidylinositol-linked receptor was not reduced by methyl-beta-cyclodextrin or by nystatin which both disrupt caveolar structure and functions. Thus, uptake of a glycosylphosphatidylinositol-linked protein, in this case the diphtheria toxin receptor, into the endosomal/lysosomal system can occur independently of both caveolae and clathrin-coated vesicles.


2020 ◽  
Vol 117 (26) ◽  
pp. 15281-15292 ◽  
Author(s):  
Nestor N. Jimenez-Vargas ◽  
Jing Gong ◽  
Matthew J. Wisdom ◽  
Dane D. Jensen ◽  
Rocco Latorre ◽  
...  

Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability. DOPr agonists inhibited mechanically sensitive colonic nociceptors. DOPr endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and DOPr agonists. DOPr agonists stimulated the recruitment of Gαi/oand β-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of DOPr endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus. We explored a nanoparticle delivery strategy to evaluate whether endosomal DOPr might be a therapeutic target for pain. The DOPr agonist DADLE was coupled to a liposome shell for targeting DOPr-positive nociceptors and incorporated into a mesoporous silica core for release in the acidic and reducing endosomal environment. Nanoparticles activated DOPr at the plasma membrane, were preferentially endocytosed by DOPr-expressing cells, and were delivered to DOPr-positive early endosomes. Nanoparticles caused a long-lasting activation of DOPr in endosomes, which provided sustained inhibition of nociceptor excitability and relief from inflammatory pain. Conversely, nanoparticles containing a DOPr antagonist abolished the sustained inhibitory effects of DADLE. Thus, DOPr in endosomes is an endogenous mechanism and a therapeutic target for relief from chronic inflammatory pain.


2020 ◽  
Vol 21 (24) ◽  
pp. 9352
Author(s):  
Manh Tien Tran ◽  
Yuka Okusha ◽  
Yunxia Feng ◽  
Masatoshi Morimatsu ◽  
Penggong Wei ◽  
...  

Rab11b, abundantly enriched in endocytic recycling compartments, is required for the establishment of the machinery of vesicle trafficking. Yet, no report has so far characterized the biological function of Rab11b in osteoclastogenesis. Using in vitro model of osteoclasts differentiated from murine macrophages like RAW-D cells or bone marrow-derived macrophages, we elucidated that Rab11b served as an inhibitory regulator of osteoclast differentiation sequentially via (i) abolishing surface abundance of RANK and c-Fms receptors; and (ii) attenuating nuclear factor of activated T-cells c1 (NFATc-1) upstream signaling cascades, following RANKL stimulation. Rab11b was localized in early and late endosomes, Golgi complex, and endoplasmic reticulum; moreover, its overexpression enlarged early and late endosomes. Upon inhibition of lysosomal function by a specific blocker, chloroquine (CLQ), we comprehensively clarified a novel function of lysosomes on mediating proteolytic degradation of c-Fms and RANK surface receptors, drastically ameliorated by Rab11b overexpression in RAW-D cell-derived osteoclasts. These findings highlight the key role of Rab11b as an inhibitor of osteoclastogenesis by directing the transport of c-Fms and RANK surface receptors to lysosomes for degradation via the axis of early endosomes-late endosomes-lysosomes, thereby contributing towards the systemic equilibrium of the bone resorption phase.


Blood ◽  
1986 ◽  
Vol 67 (5) ◽  
pp. 1224-1228 ◽  
Author(s):  
S Rajagopalan ◽  
SV Pizzo

Abstract The binding of human fibrinogen degradation fragments D1, E, X, and Y, as well as fibrin fragment D1 dimer, to mouse peritoneal macrophages was examined. A Scatchard plot of fragment D1 binding was biphasic, suggesting two classes of receptors. Fragments D1, D1 dimer, X, and Y in low concentrations bound to macrophages with high affinity (Kd = 23 to 73 X 10(-11) mol/L). Fragment E bound specifically but at a much lower level than the other fragments. Fragment D1 was able to compete for the binding of radiolabeled fragments X and Y but not radiolabeled fragment E. These studies indicate that fragments D and E are recognized by separate receptor systems but that all of the fibrinogen degradation products that contain the D domain are recognized by the same receptor system.


Sign in / Sign up

Export Citation Format

Share Document