scholarly journals Neural Correlates of Value-Driven Spatial Attention

2021 ◽  
Author(s):  
Ming-Ray Liao ◽  
Andy Jeesu Kim ◽  
Brian A Anderson

Reward learning has been shown to habitually guide spatial attention to regions of a scene. However, the neural mechanisms that support this bias in spatial orienting are unknown. In the present study, participants learned to orient to a particular quadrant of a scene (high-value quadrant) to maximize monetary gains. This learning was scene-specific, with the high-value quadrant varying across different scenes. During a subsequent test phase, participants were faster at identifying a target if it appeared in the high-value quadrant (valid), and initial saccades were more likely to be made to the high-value quadrant. fMRI analyses during the test phase revealed learning-dependent priority signals in the bilateral caudate tail and superior colliculus, frontal eye field, substantia nigra, and insula, paralleling findings concerning feature-based value-driven attention. In addition, ventral regions typically associated with scene selective and spatial information processing, including the hippocampus, parahippocampal gyrus, and temporo-occipital cortex, were also implicated. Taken together, our findings offer new insights into the neural architecture subserving value-driven attention, both extending our understanding of nodes in the attention network previously implicated in feature-based value-driven attention and identifying a ventral network of brain regions implicated in rewards influence on scene-dependent spatial orienting.

2019 ◽  
Vol 30 (4) ◽  
pp. 526-540 ◽  
Author(s):  
Nicole Hakim ◽  
Kirsten C. S. Adam ◽  
Eren Gunseli ◽  
Edward Awh ◽  
Edward K. Vogel

Complex cognition relies on both on-line representations in working memory (WM), said to reside in the focus of attention, and passive off-line representations of related information. Here, we dissected the focus of attention by showing that distinct neural signals index the on-line storage of objects and sustained spatial attention. We recorded electroencephalogram (EEG) activity during two tasks that employed identical stimulus displays but varied the relative demands for object storage and spatial attention. We found distinct delay-period signatures for an attention task (which required only spatial attention) and a WM task (which invoked both spatial attention and object storage). Although both tasks required active maintenance of spatial information, only the WM task elicited robust contralateral delay activity that was sensitive to mnemonic load. Thus, we argue that the focus of attention is maintained via a collaboration between distinct processes for covert spatial orienting and object-based storage.


2021 ◽  
Author(s):  
Gopalkumar Rakesh ◽  
Delin Sun ◽  
Mark Logue ◽  
Emily Clarke-Rubright ◽  
Brian M. O Leary ◽  
...  

Introduction - Cortical thickness (CT) and surface area (SA) are established biomarkers of brain pathology in posttraumatic stress disorder (PTSD). Structural covariance networks (SCN) constructed from CT and SA may represent developmental associations, or unique interactions between brain regions, possibly influenced by a common causal antecedent. The ENIGMA-PGC PTSD Working Group aggregated PTSD and control subject data from 29 cohorts in five countries (3439). Methods - Using Destrieux Atlas, we built SCNs and compared centrality measures between PTSD subjects and controls. Centrality is a graph theory measure derived using SCN. Results - Notable nodes with higher CT-based centrality in PTSD compared to controls were left fusiform gyrus, left superior temporal gyrus, and right inferior temporal gyrus. We found sex-based centrality differences in bilateral frontal lobe regions, left anterior cingulate, left superior occipital cortex and right ventromedial prefrontal cortex (vmPFC). Comorbid PTSD and MDD showed higher CT-based centrality in the right anterior cingulate gyrus, right parahippocampal gyrus and lower SA-based centrality in left insular gyrus. Conclusion - Unlike previous studies with smaller sample sizes (less than 318), our study found differences in centrality measures using a sample size of 3439 subjects. This is the first cross-sectional study to examine SCN interactions with age, sex, and comorbid MDD. Although limited to group level inferences, centrality measures offer insights into nodal relationship to the entire functional connectome unlike approaches like seed-based connectivity or independent component analysis. Nodes having higher centrality have greater structural or functional connections, lending them invaluable for translational treatments like neuromodulation.


2017 ◽  
Vol 29 (7) ◽  
pp. 1226-1238 ◽  
Author(s):  
Amanda E. van Lamsweerde ◽  
Jeffrey S. Johnson

Maintaining visual working memory (VWM) representations recruits a network of brain regions, including the frontal, posterior parietal, and occipital cortices; however, it is unclear to what extent the occipital cortex is engaged in VWM after sensory encoding is completed. Noninvasive brain stimulation data show that stimulation of this region can affect working memory (WM) during the early consolidation time period, but it remains unclear whether it does so by influencing the number of items that are stored or their precision. In this study, we investigated whether single-pulse transcranial magnetic stimulation (spTMS) to the occipital cortex during VWM consolidation affects the quantity or quality of VWM representations. In three experiments, we disrupted VWM consolidation with either a visual mask or spTMS to retinotopic early visual cortex. We found robust masking effects on the quantity of VWM representations up to 200 msec poststimulus offset and smaller, more variable effects on WM quality. Similarly, spTMS decreased the quantity of VWM representations, but only when it was applied immediately following stimulus offset. Like visual masks, spTMS also produced small and variable effects on WM precision. The disruptive effects of both masks and TMS were greatly reduced or entirely absent within 200 msec of stimulus offset. However, there was a reduction in swap rate across all time intervals, which may indicate a sustained role of the early visual cortex in maintaining spatial information.


2018 ◽  
Author(s):  
Nicole Hakim ◽  
Kirsten C. S. Adam ◽  
Eren Gunseli ◽  
Edward Awh ◽  
Edward K. Vogel

AbstractComplex cognition relies on both online representations in working memory (WM) said to reside in thefocus of attention, and passive offline representations of related information. Here, we dissect the focus of attention by showing that distinct neural signals index the online storage of objects and sustained spatial attention. We recorded EEG activity during two tasks that employed identical stimulus displays while the relative demands for object storage and spatial attention varied. We found distinct delay-period signatures for an attention task (which only required spatial attention) and WM task (which invoked both spatial attention and object storage). Although both tasks required active maintenance of spatial information, only the WM task elicited robust contralateral delay activity that was sensitive to mnemonic load. Thus, we argue that the focus of attention is maintained via a collaboration between distinct processes for covert spatial orienting and object-based storage.


Author(s):  
Burkhard Müller ◽  
Jürgen Gehrke

Abstract. Planning interactions with the physical world requires knowledge about operations; in short, mental operators. Abstractness of content and directionality of access are two important properties to characterize the representational units of this kind of knowledge. Combining these properties allows four classes of knowledge units to be distinguished that can be found in the literature: (a) rules, (b) mental models or schemata, (c) instances, and (d) episodes or chunks. The influence of practicing alphabet-arithmetic operators in a prognostic, diagnostic, or retrognostic way (A + 2 = ?, A? = C, or ? + 2 = C, respectively) on the use of that knowledge in a subsequent test was used to assess the importance of these dimensions. At the beginning, the retrognostic use of knowledge was worse than the prognostic use, although identical operations were involved (A + 2 = ? vs. ? - 2 = A). This disadvantage was reduced with increased practice. Test performance was best if the task and the letter pairs were the same as in the acquisition phase. Overall, the findings support theories proposing multiple representational units of mental operators. The disadvantage for the retrognosis task was recovered in the test phase, and may be evidence for the importance of the order of events independent of the order of experience.


2021 ◽  
Author(s):  
J. Marvin Soeder ◽  
Julia Luthardt ◽  
Michael Rullmann ◽  
Georg A. Becker ◽  
Mohammed K. Hankir ◽  
...  

Abstract Purpose Roux-en-Y gastric bypass (RYGB) surgery is currently the most efficient treatment to achieve long-term weight loss in individuals with severe obesity. This is largely attributed to marked reductions in food intake mediated in part by changes in gut-brain communication. Here, we investigated for the first time whether weight loss after RYGB is associated with alterations in central noradrenaline (NA) neurotransmission. Materials and Methods We longitudinally studied 10 individuals with severe obesity (8 females; age 43.9 ± 13.1 years; body mass index (BMI) 46.5 ± 4.8 kg/m2) using (S,S)-[11C]O-methylreboxetine and positron emission tomography to estimate NA transporter (NAT) availability before and 6 months after surgery. NAT distribution volume ratios (DVR) were calculated by volume-of-interest analysis and the two-parameter multilinear reference tissue model (reference region: occipital cortex). Results The participants responded to RYGB surgery with a reduction in BMI of 12.0 ± 3.5 kg/m2 (p < 0.001) from baseline. This was paralleled by a significant reduction in DVR in the dorsolateral prefrontal cortex (pre-surgery 1.12 ± 0.04 vs. post-surgery 1.07 ± 0.04; p = 0.019) and a general tendency towards reduced DVR throughout the brain. Furthermore, we found a strong positive correlation between pre-surgery DVR in hypothalamus and the change in BMI (r = 0.78; p = 0.01). Conclusion Reductions in BMI after RYGB surgery are associated with NAT availability in brain regions responsible for decision-making and homeostasis. However, these results need further validation in larger cohorts, to assess whether brain NAT availability could prognosticate the outcome of RYGB on BMI. Graphical abstract


2012 ◽  
Vol 108 (5) ◽  
pp. 1392-1402 ◽  
Author(s):  
Elsie Premereur ◽  
Wim Vanduffel ◽  
Pieter R. Roelfsema ◽  
Peter Janssen

Macaque frontal eye fields (FEF) and the lateral intraparietal area (LIP) are high-level oculomotor control centers that have been implicated in the allocation of spatial attention. Electrical microstimulation of macaque FEF elicits functional magnetic resonance imaging (fMRI) activations in area LIP, but no study has yet investigated the effect of FEF microstimulation on LIP at the single-cell or local field potential (LFP) level. We recorded spiking and LFP activity in area LIP during weak, subthreshold microstimulation of the FEF in a delayed-saccade task. FEF microstimulation caused a highly time- and frequency-specific, task-dependent increase in gamma power in retinotopically corresponding sites in LIP: FEF microstimulation produced a significant increase in LIP gamma power when a saccade target appeared and remained present in the LIP receptive field (RF), whereas less specific increases in alpha power were evoked by FEF microstimulation for saccades directed away from the RF. Stimulating FEF with weak currents had no effect on LIP spike rates or on the gamma power during memory saccades or passive fixation. These results provide the first evidence for task-dependent modulations of LFPs in LIP caused by top-down stimulation of FEF. Since the allocation and disengagement of spatial attention in visual cortex have been associated with increases in gamma and alpha power, respectively, the effects of FEF microstimulation on LIP are consistent with the known effects of spatial attention.


2021 ◽  
Vol 19 ◽  
Author(s):  
Yuchao Jiang ◽  
Mingjun Duan ◽  
Hui He ◽  
Dezhong Yao ◽  
Cheng Luo

Background: Schizophrenia (SZ) is a severe psychiatric disorder typically characterized by multidimensional psychotic syndromes. Electroconvulsive therapy (ECT) is a treatment option for medication-resistant patients with SZ or to resolve acute symptoms. Although the efficacy of ECT has been demonstrated in clinical use, its therapeutic mechanisms in the brain remain elusive. Objective: This study aimed to summarize brain changes on structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) after ECT. Methods: According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a systematic review was carried out. The PubMed and Medline databases were systematically searched using the following medical subject headings (MeSH): (electroconvulsive therapy OR ECT) AND (schizophrenia) AND (MRI OR fMRI OR DTI OR DWI). Results: This review yielded 12 MRI studies, including 4 with sMRI, 5 with fMRI and 3 with multimodal MRI. Increases in volumes of the hippocampus and its adjacent regions (parahippocampal gyrus and amygdala) as well as insula and frontotemporal regions were noted after ECT. fMRI studies found ECT-induced changes in different brain regions/networks, including the hippocampus, amygdala, default model network, salience network and other regions/networks that are thought to highly correlate with the pathophysiologic characteristics of SZ. The results of the correlation between brain changes and symptom remissions are inconsistent Conclusion: Our review provides evidence supporting ECT-induced brain changes on sMRI and fMRI in SZ and explores the relationship between these changes and symptom remission.


2014 ◽  
Vol 112 (6) ◽  
pp. 1307-1316 ◽  
Author(s):  
Isabel Dombrowe ◽  
Claus C. Hilgetag

The voluntary, top-down allocation of visual spatial attention has been linked to changes in the alpha-band of the electroencephalogram (EEG) signal measured over occipital and parietal lobes. In the present study, we investigated how occipitoparietal alpha-band activity changes when people allocate their attentional resources in a graded fashion across the visual field. We asked participants to either completely shift their attention into one hemifield, to balance their attention equally across the entire visual field, or to attribute more attention to one-half of the visual field than to the other. As expected, we found that alpha-band amplitudes decreased stronger contralaterally than ipsilaterally to the attended side when attention was shifted completely. Alpha-band amplitudes decreased bilaterally when attention was balanced equally across the visual field. However, when participants allocated more attentional resources to one-half of the visual field, this was not reflected in the alpha-band amplitudes, which just decreased bilaterally. We found that the performance of the participants was more strongly reflected in the coherence between frontal and occipitoparietal brain regions. We conclude that low alpha-band amplitudes seem to be necessary for stimulus detection. Furthermore, complete shifts of attention are directly reflected in the lateralization of alpha-band amplitudes. In the present study, a gradual allocation of visual attention across the visual field was only indirectly reflected in the alpha-band activity over occipital and parietal cortexes.


2011 ◽  
Vol 26 (S2) ◽  
pp. 960-960
Author(s):  
J.L. Villegas Martínez ◽  
J.A. Blanco Garrote ◽  
F. Uribe Ladrón de Cegama ◽  
B. Arribas Simón ◽  
G. Cabús Piñol

IntroductionDiffusion tensor imaging (DTI) is a magnetic resonance imaging technique that have increasingly being used for the non-invasive evaluation of brain white matter (WM) abnormalities. Several studies suggest that the normal integration of cerebral function may be compromised in schizophrenia. Abnormalities in WM tracts may be directly relevant for the neuropathology of schizophrenia.ObjetivesThe purpose of this review was to discuss recent DTI findings in schizophrenia and a methodologic analysis.MethodsThe literature search was performed with the search engine PubMed of the U.S. National Library of Medicine. Search strategy used was based on the Cochrane review technique, limited to the period between 1998 (first report on DTI and schizophrenia) and May 2010. And limited to ‘Title/Abstract’. The reference lists of these studies were used to identify additional studies.ResultsThere is a striking amount of heterogeneity in findings, probably by methodologic problems. Brain regions such as the cingulate bundle, corpus callosum, and regions within frontal and temporal WM have a proportionally larger number of positive findings across the studies. In addition, WM tracts as The superior longitudinal fasciculus, fronto-occipital longitudinal fasciculi, uncinate fasciculi, frontal longitudinal fasciculus and the arcuate fasciculus have also positive findings in patients with schizophrenia. Other brain structures as the cerebellar peduncles, the fornix, the hippocampus and parahippocampal gyrus, the thalamic and optic radiations have been evaluated and shown positive findings. However, these findings are not present in all studies. DTI abnormalities in first-episode patients are less robust than in chronic patients.ConclusionsRecent DTI findings further support the hypothesis of structural dysconnectivity in schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document