scholarly journals Capsid-E2 interactions rescue core assembly in viruses that cannot form cytoplasmic nucleocapsid cores

2021 ◽  
Author(s):  
Julie M. Button ◽  
Suchetana Mukhopadhyay

Alphavirus capsid proteins (CPs) have two domains: the N-terminal domain (NTD) that interacts with the viral RNA, and the C-terminal domain (CTD) that forms CP-CP interactions and interacts with the cytoplasmic domain of the E2 spike protein (cdE2). In this study, we examine how mutations in the CP NTD affect CP CTD interactions with cdE2. We changed the length and/or charge of the NTD of Ross River virus CP and found that changing the charge of the NTD has a greater impact on core and virion assembly than changing the length of the NTD. The NTD CP insertion mutants are unable to form cytoplasmic cores during infection but they do form cores or core-like structures in virions. Our results are consistent with cdE2 having a role in core maturation during virion assembly and rescuing core formation when cytoplasmic cores are not assembled. We go on to find that the isolated cores from some mutant virions are now assembly competent in that they can be disassembled and reassembled back into cores. These results show how the two domains of CP may have distinct yet coordinated roles.

2021 ◽  
Author(s):  
Julie M. Button ◽  
Suchetana Mukhopadhyay

Alphavirus capsid proteins (CPs) have two domains: the N-terminal domain (NTD) that interacts with the viral RNA, and the C-terminal domain (CTD) that forms CP-CP interactions and interacts with the cytoplasmic domain of the E2 spike protein (cdE2). In this study, we examine how mutations in the CP NTD affect CP CTD interactions with cdE2. We changed the length and/or charge of the NTD of Ross River virus CP and found that changing the charge of the NTD has a greater impact on core and virion assembly than changing the length of the NTD. The NTD CP insertion mutants are unable to form cytoplasmic cores during infection but they do form cores or core-like structures in virions. Our results are consistent with cdE2 having a role in core maturation during virion assembly and rescuing core formation when cytoplasmic cores are not assembled. We go on to find that the isolated cores from some mutant virions are now assembly competent in that they can be disassembled and reassembled back into cores. These results show how the two domains of CP may have distinct yet coordinated roles. IMPORTANCE: Structural viral proteins have multiple roles during entry and assembly. The capsid protein (CP) of alphaviruses has one domain that interacts with the viral genome and another domain that interacts with the E2 spike protein. In this work we determine that the length and/or charge of the CP affects cytoplasmic core formation. However, defects in cytoplasmic core formation can be overcome by E2-CP interactions, thus assembling a core or core-like complex in the virion. In the absence of both cytoplasmic cores and CP-E2 interactions, CP is not even packaged in the released virions, but some infectious particles are still released presumably as RNA packaged in a glycoprotein containing membrane shell. This suggests that the virus has multiple mechanisms in place to ensure the viral genome is surrounded by a capsid core during its lifecycle.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Muchen Pan ◽  
Ana L. Alvarez-Cabrera ◽  
Joon S. Kang ◽  
Lihua Wang ◽  
Chunhai Fan ◽  
...  

AbstractMammalian reovirus (MRV) is the prototypical member of genus Orthoreovirus of family Reoviridae. However, lacking high-resolution structures of its RNA polymerase cofactor μ2 and infectious particle, limits understanding of molecular interactions among proteins and RNA, and their contributions to virion assembly and RNA transcription. Here, we report the 3.3 Å-resolution asymmetric reconstruction of transcribing MRV and in situ atomic models of its capsid proteins, the asymmetrically attached RNA-dependent RNA polymerase (RdRp) λ3, and RdRp-bound nucleoside triphosphatase μ2 with a unique RNA-binding domain. We reveal molecular interactions among virion proteins and genomic and messenger RNA. Polymerase complexes in three Spinoreovirinae subfamily members are organized with different pseudo-D3d symmetries to engage their highly diversified genomes. The above interactions and those between symmetry-mismatched receptor-binding σ1 trimers and RNA-capping λ2 pentamers balance competing needs of capsid assembly, external protein removal, and allosteric triggering of endogenous RNA transcription, before, during and after infection, respectively.


2010 ◽  
Vol 84 (15) ◽  
pp. 7592-7602 ◽  
Author(s):  
Amanda R. Howard ◽  
Andrea S. Weisberg ◽  
Bernard Moss

ABSTRACT Some orthopoxviruses, e.g., the cowpox, ectromelia, and raccoonpox viruses, form large, discrete cytoplasmic inclusions within which mature virions (MVs) are embedded by a process called occlusion. These inclusions, which may protect occluded MVs in the environment, are composed of aggregates of the A-type inclusion protein (ATIp), which is truncated in orthopoxviruses such as vaccinia virus (VACV) and variola virus that fail to form inclusions. In addition to an intact ATIp, occlusion requires the A26 protein (A26p). Although VACV contains a functional A26p, determined by complementation of a cowpox virus occlusion-defective mutant, its role in occlusion was unknown. We found that restoration of the full-length ATI gene was sufficient for VACV inclusion formation and the ensuing occlusion of MVs. A26p was present in inclusions even when virion assembly was inhibited, suggesting a direct interaction of A26p with ATIp. Analysis of a panel of ATIp mutants indicated that the C-terminal repeat region was required for inclusion formation and the N-terminal domain for interaction with A26p and occlusion. A26p is tethered to MVs via interaction with the A27 protein (A27p); A27p was not required for association of A26p with ATIp but was necessary for occlusion. In addition, the C-terminal domain of A26p, which mediates A26p-A27p interactions, was necessary but insufficient for occlusion. Taken together, the data suggest a model for occlusion in which A26p has a bridging role between ATIp and A27p, and A27p provides a link to the MV membrane.


Author(s):  
Zachariah P. Schuurs ◽  
Edward Hammond ◽  
Stefano Elli ◽  
Timothy R. Rudd ◽  
Courtney J. Mycroft-West ◽  
...  

Cell ◽  
2021 ◽  
Author(s):  
Naveenchandra Suryadevara ◽  
Swathi Shrihari ◽  
Pavlo Gilchuk ◽  
Laura A. VanBlargan ◽  
Elad Binshtein ◽  
...  

2015 ◽  
Vol 89 (8) ◽  
pp. 4237-4248 ◽  
Author(s):  
Jane Besong-Ndika ◽  
Konstantin I. Ivanov ◽  
Anders Hafrèn ◽  
Thierry Michon ◽  
Kristiina Mäkinen

ABSTRACTPotato virus A(PVA) is a single-stranded positive-sense RNA virus and a member of the familyPotyviridae. The PVA coat protein (CP) has an intrinsic capacity to self-assemble into filamentous virus-like particles, but the mechanism responsible for the initiation of viral RNA encapsidationin vivoremains unclear. Apart from virion assembly, PVA CP is also involved in the inhibition of viral RNA translation. In this study, we show that CP inhibits PVA RNA translation in a dose-dependent manner, through a mechanism involving the CP-encoding region. Analysis of this region, however, failed to identify any RNA secondary structure(s) preferentially recognized by CP, suggesting that the inhibition depends on CP-CP rather than CP-RNA interactions. In agreement with this possibility, insertion of an in-frame stop codon upstream of the CP sequence led to a marked decrease in the inhibition of viral RNA translation. Based on these results, we propose a model in which the cotranslational interactions between excess CP accumulating intransand CP translated from viral RNA incisare required to initiate the translational repression. This model suggests a mechanism for how viral RNA can be sequestered from translation and specifically selected for encapsidation at the late stages of viral infection.IMPORTANCEThe main functions of the CP during potyvirus infection are to protect viral RNA from degradation and to transport it locally, systemically, and from host to host. Although virion assembly is a key step in the potyviral infectious cycle, little is known about how it is initiated and how viral RNA is selected for encapsidation. The results presented here suggest that CP-CP rather than CP-RNA interactions are predominantly involved in the sequestration of viral RNA away from translation. We propose that the cotranslational nature of these interactions may represent a mechanism for the selection of viral RNA for encapsidation. A better understanding of the mechanism of virion assembly may lead to development of crops resistant to potyviruses at the level of viral RNA encapsidation, thereby reducing the detrimental effects of potyvirus infections on food production.


2021 ◽  
Author(s):  
Jiale Shi ◽  
Yuejun Shi ◽  
Ruixue Xiu ◽  
Gang Wang ◽  
Rui Liang ◽  
...  

The receptor binding domain (RBD) of the coronavirus spike protein (S) has been verified to be the main target for potent neutralizing antibodies (nAbs) in most coronaviruses, and the N-terminal domain (NTD) of some betacoronaviruses has also been indicated to induce nAbs. For alphacoronavirus HCoV-229E, its RBD has been shown to have neutralizing epitopes, and these epitopes could change over time. However, whether neutralizing epitopes exist on the NTD and whether these epitopes change like those of the RBD are still unknown. Here, we verified that neutralizing epitopes exist on the NTD of HCoV-229E. Furthermore, we characterized an NTD targeting nAb 5H10, which could neutralize both pseudotyped and authentic HCoV-229E VR740 in vitro. Epitope mapping indicated that 5H10 targeted motif E1 (147-167 aa) and identified F159 as critical for 5H10 binding. More importantly, our results revealed that motif E1 was highly conserved among clinical isolates except for F159. Further data proved that mutations at position 159 gradually appeared over time and could completely abolish the neutralizing ability of 5H10, supporting the notion that position 159 may be under selective pressure during the human epidemic. In addition, we also found that contemporary clinical serum has a stronger binding capacity for the NTD of contemporary strains than historic strains, proving that the epitope on the NTD could change over time. In summary, these findings define a novel neutralizing epitope on the NTD of HCoV-229E S and provide a theoretical basis for the design of vaccines against HCoV-229E or related coronaviruses. Importance Characterization of the neutralizing epitope of the spike (S) protein, the major invasion protein of coronaviruses, can help us better understand the evolutionary characteristics of these viruses and promote vaccine development. To date, the neutralizing epitope distribution of alphacoronaviruses is not well known. Here, we identified a neutralizing antibody that targeted the N-terminal domain (NTD) of the alphacoronavirus HCoV-229E S protein. Epitope mapping revealed a novel epitope that was not previously discovered in HCoV-229E. Further studies identified an important residue, F159. Mutations that gradually appeared over time at this site abolished the neutralizing ability of 5H10, indicating that selective pressure occurred at this position in the spread of HCoV-229E. Furthermore, we found that the epitopes within the NTD also changed over time. Taken together, our findings defined a novel neutralizing epitope and highlighted the role of the NTD in the future prevention and control of HCoV-229E or related coronaviruses.


Sign in / Sign up

Export Citation Format

Share Document