Possible impact of plasma oxidation on the structure of C-terminal domain of SARS-CoV-2 spike protein: a computational study

Author(s):  
Pankaj Attri ◽  
Kazunori Koga ◽  
Masaharu SHIRATANI
Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 673
Author(s):  
Riadh Badraoui ◽  
Mohd Adnan ◽  
Fevzi Bardakci ◽  
Mousa M. Alreshidi

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection inducing coronavirus disease 2019 (COVID-19) is still an ongoing challenge. To date, more than 95.4 million have been infected and more than two million deaths have been officially reported by the WHO. Angiotensin-converting enzyme (ACE) plays a key role in the disease pathogenesis. In this computational study, seventeen coding variants were found to be important for ACE2 binding with the coronavirus spike protein. The frequencies of these allele variants range from 3.88 × 10−3 to 5.47 × 10−6 for rs4646116 (K26R) and rs1238146879 (P426A), respectively. Chloroquine (CQ) and its metabolite hydroxychloroquine (HCQ) are mainly used to prevent and treat malaria and rheumatic diseases. They are also used in several countries to treat SARS-CoV-2 infection inducing COVID-19. Both CQ and HCQ were found to interact differently with the various ACE2 domains reported to bind with coronavirus spike protein. A molecular docking approach revealed that intermolecular interactions of both CQ and HCQ exhibited mediation by ACE2 polymorphism. Further explorations of the relationship and the interactions between ACE2 polymorphism and CQ/HCQ would certainly help to better understand the COVID-19 management strategies, particularly their use in the absence of specific vaccines or drugs.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1208
Author(s):  
Maral Aminpour ◽  
Marco Cannariato ◽  
Angelica Zucco ◽  
Elisabetta Di Gregorio ◽  
Simone Israel ◽  
...  

Galectin-3 is a carbohydrate-binding protein and the most studied member of the galectin family. It regulates several functions throughout the body, among which are inflammation and post-injury remodelling. Recent studies have highlighted the similarity between Galectin-3′s carbohydrate recognition domain and the so-called “galectin fold” present on the N-terminal domain of the S1 sub-unit of the SARS-CoV-2 spike protein. Sialic acids binding to the N-terminal domain of the Spike protein are known to be crucial for viral entry into humans, and the role of Galectin-3 as a mediator of lung fibrosis has long been the object of study since its levels have been found to be abnormally high in alveolar macrophages following lung injury. In this context, the discovery of a double inhibitor may both prevent viral entry and reduce post-infection pulmonary fibrosis. In this study, we use a database of 56 compounds, among which 37 have known experimental affinity with Galectin-3. We carry out virtual screening of this database with respect to Galectin-3 and Spike protein. Several ligands are found to exhibit promising binding affinity and interaction with the Spike protein’s N-terminal domain as well as with Galectin-3. This finding strongly suggests that existing Galectin-3 inhibitors possess dual-binding capabilities to disrupt Spike–ACE2 interactions. Herein we identify the most promising inhibitors of Galectin-3 and Spike proteins, of which five emerge as potential dual effective inhibitors. Our preliminary results warrant further in vitro and in vivo testing of these putative inhibitors against SARS-CoV-2 with the hope of being able to halt the spread of the virus in the future.


Author(s):  
Zachariah P. Schuurs ◽  
Edward Hammond ◽  
Stefano Elli ◽  
Timothy R. Rudd ◽  
Courtney J. Mycroft-West ◽  
...  

Cell ◽  
2021 ◽  
Author(s):  
Naveenchandra Suryadevara ◽  
Swathi Shrihari ◽  
Pavlo Gilchuk ◽  
Laura A. VanBlargan ◽  
Elad Binshtein ◽  
...  

2021 ◽  
Author(s):  
Jiale Shi ◽  
Yuejun Shi ◽  
Ruixue Xiu ◽  
Gang Wang ◽  
Rui Liang ◽  
...  

The receptor binding domain (RBD) of the coronavirus spike protein (S) has been verified to be the main target for potent neutralizing antibodies (nAbs) in most coronaviruses, and the N-terminal domain (NTD) of some betacoronaviruses has also been indicated to induce nAbs. For alphacoronavirus HCoV-229E, its RBD has been shown to have neutralizing epitopes, and these epitopes could change over time. However, whether neutralizing epitopes exist on the NTD and whether these epitopes change like those of the RBD are still unknown. Here, we verified that neutralizing epitopes exist on the NTD of HCoV-229E. Furthermore, we characterized an NTD targeting nAb 5H10, which could neutralize both pseudotyped and authentic HCoV-229E VR740 in vitro. Epitope mapping indicated that 5H10 targeted motif E1 (147-167 aa) and identified F159 as critical for 5H10 binding. More importantly, our results revealed that motif E1 was highly conserved among clinical isolates except for F159. Further data proved that mutations at position 159 gradually appeared over time and could completely abolish the neutralizing ability of 5H10, supporting the notion that position 159 may be under selective pressure during the human epidemic. In addition, we also found that contemporary clinical serum has a stronger binding capacity for the NTD of contemporary strains than historic strains, proving that the epitope on the NTD could change over time. In summary, these findings define a novel neutralizing epitope on the NTD of HCoV-229E S and provide a theoretical basis for the design of vaccines against HCoV-229E or related coronaviruses. Importance Characterization of the neutralizing epitope of the spike (S) protein, the major invasion protein of coronaviruses, can help us better understand the evolutionary characteristics of these viruses and promote vaccine development. To date, the neutralizing epitope distribution of alphacoronaviruses is not well known. Here, we identified a neutralizing antibody that targeted the N-terminal domain (NTD) of the alphacoronavirus HCoV-229E S protein. Epitope mapping revealed a novel epitope that was not previously discovered in HCoV-229E. Further studies identified an important residue, F159. Mutations that gradually appeared over time at this site abolished the neutralizing ability of 5H10, indicating that selective pressure occurred at this position in the spread of HCoV-229E. Furthermore, we found that the epitopes within the NTD also changed over time. Taken together, our findings defined a novel neutralizing epitope and highlighted the role of the NTD in the future prevention and control of HCoV-229E or related coronaviruses.


Molecules ◽  
2019 ◽  
Vol 24 (10) ◽  
pp. 1972 ◽  
Author(s):  
Jūratė Skerniškytė ◽  
Emilija Karazijaitė ◽  
Julien Deschamps ◽  
Renatas Krasauskas ◽  
Romain Briandet ◽  
...  

Acinetobacter baumannii is a nosocomial human pathogen of increasing concern due to its multidrug resistance profile. The outer membrane protein A (OmpA) is an abundant bacterial cell surface component involved in A. baumannii pathogenesis. It has been shown that the C-terminal domain of OmpA is located in the periplasm and non-covalently associates with the peptidoglycan layer via two conserved amino acids, thereby anchoring OmpA to the cell wall. Here, we investigated the role of one of the respective residues, D268 in OmpA of A. baumannii clinical strain Ab169, on its virulence characteristics by complementing the ΔompA mutant with the plasmid-borne ompAD268A allele. We show that while restoring the impaired biofilm formation of the ΔompA strain, the Ab169ompAD268A mutant tended to form bacterial filaments, indicating the abnormalities in cell division. Moreover, the Ab169 OmpA D268-mediated association to peptidoglycan was required for the manifestation of twitching motility, desiccation resistance, serum-induced killing, adhesion to epithelial cells and virulence in a nematode infection model, although it was dispensable for the uptake of β-lactam antibiotics by outer membrane vesicles. Overall, the results of this study demonstrate that the OmpA C-terminal domain-mediated association to peptidoglycan is critical for a number of virulent properties displayed by A. baumannii outside and within the host.


Sign in / Sign up

Export Citation Format

Share Document