scholarly journals The P-selectin ligand PSGL-1 (CD162) is efficiently incorporated by primary HIV-1 isolates and can facilitate trans-infection

2021 ◽  
Author(s):  
Jonathan Burnie ◽  
Arvin Tejnarine Persaud ◽  
Laxshaginee Thaya ◽  
Qingbo Liu ◽  
Huiyi Miao ◽  
...  

While P-selectin glycoprotein ligand-1 (PSGL-1/CD162) has been studied extensively for its role in mediating leukocyte rolling through interactions with its receptor, P-selectin, recently, it was identified as a novel HIV-1 host restriction factor. One key mechanism of HIV-1 restriction is the ability of PSGL-1 to be physically incorporated into the external viral envelope, which effectively reduces infectivity by blocking virus attachment through the steric hindrance caused by its large ectodomain. Importantly, a large portion of the literature demonstrating the antiviral activity of PSGL-1 has utilized viruses produced in transfected cells which express high levels of PSGL-1. However, herein we show that virion-incorporated PSGL-1 is far less abundant on the surface of viruses produced via infection of physiologically relevant models (T cell lines and primary cells) compared to transfection (overexpression) models. Unique to this study, we show that PSGL-1 is incorporated in a broad range of HIV-1 and SIV isolates, supporting the physiological relevance of this incorporation. We also report that high levels of virion-incorporated PSGL-1 are detectable in plasma from viremic HIV-1 infected individuals, further corroborating the clinical relevance of PSGL-1 in natural infection. Additionally, we show that PSGL-1 on viruses is functionally active and can bind its cognate receptor, P-selectin, and that virions captured via P-selectin can subsequently be transferred to HIV-permissive bystander cells in a model of trans-infection. Taken together, our data suggest that PSGL-1 may have diverse roles in the physiology of HIV-1 infection, not restricted to the current antiviral paradigm.

Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1935
Author(s):  
Tomoyuki Murakami ◽  
Akira Ono

Nascent HIV-1 particles incorporate the viral envelope glycoprotein and multiple host transmembrane proteins during assembly at the plasma membrane. At least some of these host transmembrane proteins on the surface of virions are reported as pro-viral factors that enhance virus attachment to target cells or facilitate trans-infection of CD4+ T cells via interactions with non-T cells. In addition to the pro-viral factors, anti-viral transmembrane proteins are incorporated into progeny virions. These virion-incorporated transmembrane proteins inhibit HIV-1 entry at the point of attachment and fusion. In infected polarized CD4+ T cells, HIV-1 Gag localizes to a rear-end protrusion known as the uropod. Regardless of cell polarization, Gag colocalizes with and promotes the virion incorporation of a subset of uropod-directed host transmembrane proteins, including CD162, CD43, and CD44. Until recently, the functions of these virion-incorporated proteins had not been clear. Here, we review the recent findings about the roles played by virion-incorporated CD162, CD43, and CD44 in HIV-1 spread to CD4+ T cells.


2016 ◽  
Vol 90 (18) ◽  
pp. 8085-8089 ◽  
Author(s):  
Ben Murrell ◽  
Thomas Vollbrecht ◽  
John Guatelli ◽  
Joel O. Wertheim

ABSTRACTMolecular evolutionary arms races between viruses and their hosts are important drivers of adaptation. These Red Queen dynamics have been frequently observed in primate retroviruses and their antagonists, host restriction factor genes, such as APOBEC3F/G, TRIM5-α, SAMHD1, and BST-2. Host restriction factors have experienced some of the most intense and pervasive adaptive evolution documented in primates. Recently, two novel host factors, SERINC3 and SERINC5, were identified as the targets of HIV-1 Nef, a protein crucial for the optimal infectivity of virus particles. Here, we compared the evolutionary fingerprints of SERINC3 and SERINC5 to those of other primate restriction factors and to a set of other genes with diverse functions. SERINC genes evolved in a manner distinct from the canonical arms race dynamics seen in the other restriction factors. Despite their antiviral activity against HIV-1 and other retroviruses, SERINC3 and SERINC5 have a relatively uneventful evolutionary history in primates.IMPORTANCERestriction factors are host proteins that block viral infection and replication. Many viruses, like HIV-1 and related retroviruses, evolved accessory proteins to counteract these restriction factors. The importance of these interactions is evidenced by the intense adaptive selection pressures that dominate the evolutionary histories of both the host and viral genes involved in this so-called arms race. The dynamics of these arms races can point to mechanisms by which these viral infections can be prevented. Two human genes, SERINC3 and SERINC5, were recently identified as targets of an HIV-1 accessory protein important for viral infectivity. Unexpectedly, we found that these SERINC genes, unlike other host restriction factor genes, show no evidence of a recent evolutionary arms race with viral pathogens.


2021 ◽  
Vol 17 (4) ◽  
pp. e1008977
Author(s):  
Rajesh Kumar ◽  
Suprit Deshpande ◽  
Leigh M. Sewall ◽  
Gabriel Ozorowski ◽  
Christopher A. Cottrell ◽  
...  

Evaluating the structure-function relationship of viral envelope (Env) evolution and the development of broadly cross-neutralizing antibodies (bnAbs) in natural infection can inform rational immunogen design. In the present study, we examined the magnitude and specificity of autologous neutralizing antibodies induced in rabbits by a novel HIV-1 clade C Env protein (1PGE-THIVC) vis-à-vis those developed in an elite neutralizer from whom the env sequence was obtained that was used to prepare the soluble Env protein. The novel 1PGE-THIVC Env trimer displayed a native like pre-fusion closed conformation in solution as determined by small angle X-ray scattering (SAXS) and negative stain electron microscopy (EM). This closed spike conformation of 1PGE-THIVC Env trimers was correlated with weak or undetectable binding of non-neutralizing monoclonal antibodies (mAbs) compared to neutralizing mAbs. Furthermore, 1PGE-THIVC SOSIP induced potent neutralizing antibodies in rabbits to autologous virus variants. The autologous neutralizing antibody specificity induced in rabbits by 1PGE-THIVC was mapped to the C3/V4 region (T362/P401) of viral Env. This observation agreed with electron microscopy polyclonal epitope mapping (EMPEM) of the Env trimer complexed with IgG Fab prepared from the immunized rabbit sera. Our study demonstrated neutralization of sequence matched and unmatched autologous viruses by serum antibodies induced in rabbits by 1PGE-THIVC and also highlighted a comparable specificity for the 1PGE-THIVC SOSIP trimer with that seen with polyclonal antibodies elicited in the elite neutralizer by negative-stain electron microscopy polyclonal epitope (ns-EMPEM) mapping.


2021 ◽  
Author(s):  
Rongrong Li ◽  
Iqbal Ahmad ◽  
Sunan Li ◽  
Silas Johnson ◽  
Liangliang Sun ◽  
...  

Abstract HIV-1 must counteract various host restriction factors to establish productive infection. SERINC5 is a critical host restriction factor that potently blocks HIV-1 entry from virions, but its activity is counteracted by Nef. The SERINC5 and Nef activities are both initiated from the plasma membrane, where SERINC5 is packaged into virions and downregulated by Nef via lysosomal degradation. However, it is still unclear how SERINC5 is localized to the plasma membrane and how its expression is regulated on the plasma membrane. We now report that Cullin 3-KLHL20, a trans-Golgi network (TGN)-localized E3 ubiquitin ligase, polyubiquitinates SERINC5 at lysine 130 via K33- and K48-linked ubiquitin chains. The K130 polyubiquitination is required not only for the SERINC5 expression on the plasma membrane, but also the SERINC5 anti-HIV-1 activity and the Nef counteractive activity. Our study reveals an important role of K33/K48-branched ubiquitin chains in HIV-1 infection by regulating protein post-Golgi trafficking and degradation.


2016 ◽  
Vol 90 (7) ◽  
pp. 3446-3457 ◽  
Author(s):  
Shilpa Patil ◽  
Rajesh Kumar ◽  
Suprit Deshpande ◽  
Sweety Samal ◽  
Tripti Shrivastava ◽  
...  

ABSTRACTBroadly neutralizing antibodies isolated from infected patients who are elite neutralizers have identified targets on HIV-1 envelope (Env) glycoprotein that are vulnerable to antibody neutralization; however, it is not known whether infection established by the majority of the circulating clade C strains in Indian patients elicit neutralizing antibody responses against any of the known targets. In the present study, we examined the specificity of a broad and potent cross-neutralizing plasma obtained from an Indian elite neutralizer infected with HIV-1 clade C. This plasma neutralized 53/57 (93%) HIV pseudoviruses prepared with Env from distinct HIV clades of different geographical origins. Mapping studies using gp120 core protein, single-residue knockout mutants, and chimeric viruses revealed that G37080 broadly cross-neutralizing (BCN) plasma lacks specificities to the CD4 binding site, gp41 membrane-proximal external region, N160 and N332 glycans, and R166 and K169 in the V1-V3 region and are known predominant targets for BCN antibodies. Depletion of G37080 plasma with soluble trimeric BG505-SOSIP.664 Env (but with neither monomeric gp120 nor clade C membrane-proximal external region peptides) resulted in significant reduction of virus neutralization, suggesting that G37080 BCN antibodies mainly target epitopes on cleaved trimeric Env. Further examination of autologous circulating Envs revealed the association of mutation of residues in the V1 loop that contributed to neutralization resistance. In summary, we report the identification of plasma antibodies from a clade C-infected elite neutralizer that mediate neutralization breadth via epitopes on trimeric gp120 not yet reported and confer autologous neutralization escape via mutation of residues in the V1 loop.IMPORTANCEA preventive vaccine to protect against HIV-1 is urgently needed. HIV-1 envelope glycoproteins are targets of neutralizing antibodies and represent a key component for immunogen design. The mapping of epitopes on viral envelopes vulnerable to immune evasion will aid in defining targets of vaccine immunogens. We identified novel conformational epitopes on the viral envelope targeted by broadly cross-neutralizing antibodies elicited in natural infection in an elite neutralizer infected with HIV-1 clade C. Our data extend our knowledge on neutralizing epitopes associated with virus escape and potentially contribute to immunogen design and antibody-based prophylactic therapy.


2019 ◽  
Vol 94 (1) ◽  
Author(s):  
Philip R. Tedbury ◽  
Mariia Novikova ◽  
Ayna Alfadhli ◽  
Yuta Hikichi ◽  
Ioannis Kagiampakis ◽  
...  

ABSTRACT The matrix (MA) domain of HIV-1 Gag plays key roles in virus assembly by targeting the Gag precursor to the plasma membrane and directing the incorporation of the viral envelope (Env) glycoprotein into virions. The latter function appears to be in part dependent on trimerization of the MA domain of Gag during assembly, as disruption of the MA trimer interface impairs Env incorporation. Conversely, many MA mutations that impair Env incorporation can be rescued by compensatory mutations in the trimer interface. In this study, we sought to investigate further the biological significance of MA trimerization by isolating and characterizing compensatory mutations that rescue MA trimer interface mutants with severely impaired Env incorporation. By serially propagating MA trimerization-defective mutants in T cell lines, we identified a number of changes in MA, both within and distant from the trimer interface. The compensatory mutations located within or near the trimer interface restored Env incorporation and particle infectivity and permitted replication in culture. The structure of the MA lattice was interrogated by measuring the cleavage of the murine leukemia virus (MLV) transmembrane Env protein by the viral protease in MLV Env-pseudotyped HIV-1 particles bearing the MA mutations and by performing crystallographic studies of in vitro-assembled MA lattices. These results demonstrate that rescue is associated with structural alterations in MA organization and rescue of MA domain trimer formation. Our data highlight the significance of the trimer interface of the MA domain of Gag as a critical site of protein-protein interaction during HIV-1 assembly and establish the functional importance of trimeric MA for Env incorporation. IMPORTANCE The immature Gag lattice is a critical structural feature of assembling HIV-1 particles, which is primarily important for virion formation and release. While Gag forms a hexameric lattice, driven primarily by the capsid domain, the MA domain additionally trimerizes where three Gag hexamers meet. MA mutants that are defective for trimerization are deficient for Env incorporation and replication, suggesting a requirement for trimerization of the MA domain of Gag in Env incorporation. This study used a gain-of-function, forced viral evolution approach to rescue HIV-1 mutants that are defective for MA trimerization. Compensatory mutations that rescue virus replication do so by restoring Env incorporation and MA trimer formation. This study supports the importance of MA domain trimerization in HIV-1 replication and the potential of the trimer interface as a therapeutic target.


Viruses ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 311 ◽  
Author(s):  
Saina Beitari ◽  
Yimeng Wang ◽  
Shan-Lu Liu ◽  
Chen Liang

Without viral envelope proteins, viruses cannot enter cells to start infection. As the major viral proteins present on the surface of virions, viral envelope proteins are a prominent target of the host immune system in preventing and ultimately eliminating viral infection. In addition to the well-appreciated adaptive immunity that produces envelope protein-specific antibodies and T cell responses, recent studies have begun to unveil a rich layer of host innate immune mechanisms restricting viral entry. This review focuses on the exciting progress that has been made in this new direction of research, by discussing various known examples of host restriction of viral entry, and diverse viral countering strategies, in particular, the emerging role of viral envelope proteins in evading host innate immune suppression. We will also highlight the effective cooperation between innate and adaptive immunity to achieve the synergistic control of viral infection by targeting viral envelope protein and checking viral escape. Given that many of the related findings were made with HIV-1, we will use HIV-1 as the model virus to illustrate the basic principles and molecular mechanisms on host restriction targeting HIV-1 envelope protein.


2015 ◽  
Vol 89 (8) ◽  
pp. 4262-4280 ◽  
Author(s):  
Cheol-Hee Yoon ◽  
Sang-Yoon Kim ◽  
Se Eun Byeon ◽  
Yideul Jeong ◽  
Jinjoo Lee ◽  
...  

ABSTRACTTumor suppressor p53 has been suggested to be a host restriction factor against HIV-1 replication, but the detailed molecular mechanism has remained elusive for decades. Here, we demonstrate that p53-mediated HIV-1 suppression is attributed to double-stranded RNA (dsRNA)-dependent protein kinase (PKR)-mediated HIV-1trans-activator (Tat) phosphorylation and inactivation. p53 silencing significantly enhanced HIV-1 replication in infected cells. Ectopic expression of p53 suppressed Tat activity, which was rescued by PKR silencing. In addition, ectopic expression of PKR abolished Tat activity in p53−/−and eIF2αCAcells. Finally, we found that HIV-1 infection activates p53, followed by the induction and activation of PKR. PKR directly interacted with HIV-1 Tat and phosphorylates the first exon of Tat exclusively at five Ser/Thr residues (T23, T40, S46, S62, and S68), which inhibits Tat-mediated provirus transcription in three critical steps: (i) phosphorylation near the arginine-rich motif (ARM) inhibits Tat translocation into the nucleus, (ii) accumulation of Tat phosphorylation abolishes Tat–Tat-responsive region (TAR) binding, and (iii) Tat phosphorylation at T23 and/or T40 obliterates the Tat-cyclin T1 interaction. These five Ser/Thr sites on Tat were highly conserved in HIV-1 strains prevalent in Europe and the United States. Taken together, our findings indicate that p53-derived host restriction of HIV-1 replication is likely attributable, at least in part, to a noncanonical p53/PKR/Tat phosphorylation and inactivation pathway in HIV-1 infection and AIDS pathogenesis.IMPORTANCEHIV-1-mediated disease progression to AIDS lasts for years to decades after primary infection. Host restriction and associated viral latency have been studied for several decades. p53 has been suggested as an important host restriction factor against HIV-1 replication. However, the detailed molecular mechanism is still unclear. In the present study, we found that the p53-mediated HIV-1 restriction is attributed to a p53/PKR/Tat-inactivation pathway. HIV-1 infection activated p53, which subsequently induced PKR expression and activation. PKR directly phosphorylated Tat exclusively at five specific Ser/Thr residues, which was accompanied by significant suppression of HIV-1 replication. Accumulation of Tat phosphorylation at these sites inhibited Tat function by blocking Tat nuclear localization, Tat binding to TAR, and Tat-cyclin T1 interaction. Our findings provide a better understanding of the p53-derived host restriction mechanism against HIV-1 replication in AIDS pathogenesis and may contribute to further research focusing on the investigation of potential therapeutic targets for HIV-1.


2010 ◽  
Vol 84 (13) ◽  
pp. 6564-6569 ◽  
Author(s):  
Lesa R. Black ◽  
Christopher Aiken

ABSTRACT The host restriction factor TRIM5α provides intrinsic defense against retroviral infections in mammalian cells. TRIM5α blocks infection by targeting the viral capsid after entry but prior to completion of reverse transcription, but whether this interaction directly alters the structure of the viral capsid is unknown. A previous study reported that rhesus macaque TRIM5α protein stably associates with cylindrical complexes formed by assembly of recombinant HIV-1 CA-NC protein in vitro and that restriction leads to accelerated HIV-1 uncoating in target cells. To gain further insight into the mechanism of TRIM5α-dependent restriction, we examined the structural effects of TRIM5 proteins on preassembled CA-NC complexes by electron microscopy. Incubation of assembled complexes with lysate of cells expressing the restrictive rhesus TRIM5α protein resulted in marked disruption of the normal cylindrical structure of the complexes. In contrast, incubation with lysate of control cells or cells expressing comparable levels of the nonrestrictive human TRIM5α protein had little effect on the complexes. Incubation with lysate of cells expressing the TRIMCyp restriction factor also disrupted the cylinders. The effect of TRIMCyp was prevented by the addition of cyclosporine, which inhibits binding of TRIMCyp to the HIV-1 capsid. Thus, disruption of CA-NC cylinders by TRIM5α and TRIMCyp was correlated with the specificity of restriction. Collectively, these results suggest that TRIM5α-dependent restriction of HIV-1 infection results from structural perturbation of the viral capsid leading to aberrant HIV-1 uncoating in target cells.


Sign in / Sign up

Export Citation Format

Share Document