scholarly journals Antibody responses to BNT162b2 vaccination in Japan: Monitoring vaccine efficacy by measuring IgG antibodies against the receptor binding domain of SARS-CoV-2

Author(s):  
Hidetsugu Fujigaki ◽  
Yasuko Yamamoto ◽  
Takenao Koseki ◽  
Sumi Banno ◽  
Tatsuya Ando ◽  
...  

BACKGROUND: To fight severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), mass vaccination has begun in many countries. To investigate the usefulness of a serological assay to predict vaccine efficacy, we analyzed the levels of IgG, IgM, and IgA against the receptor binding domain (RBD) of SARS-CoV-2 in the sera from BNT162b2 vaccinated individuals in Japan. METHODS: This study included 219 individuals who received two doses of BNT162b2. The levels of IgG, IgM, and IgA against RBD were measured by enzyme-linked immunosorbent assay before and after the first and second vaccination, respectively. The relationship between antibody levels and several factors including age, gender, and hypertension were analyzed. Virus-neutralizing activity in sera was measured to determine the correlation with the levels of antibodies. A chemiluminescent enzyme immunoassay (CLEIA) method to measure IgG against RBD was developed and validated for the clinical setting. RESULTS: The levels of all antibody isotypes were increased after vaccination. Among them, RBD-IgG was dramatically increased after the second vaccination. The IgG levels in females were significantly higher than in males. There was a negative correlation between age and IgG levels in males. The IgG levels significantly correlated with the neutralizing activity. The CLEIA assay measuring IgG against RBD showed a reliable performance and a high correlation with neutralizing activity. CONCLUSIONS: Monitoring of IgG against RBD is a powerful tool to predict the efficacy of SARS-CoV-2 vaccination and provides useful information in considering a personalized vaccination strategy for COVID-19.

2022 ◽  
Vol 12 ◽  
Author(s):  
Guadalein Tanunliong ◽  
Aaron Liu ◽  
Rohit Vijh ◽  
Tamara Pidduck ◽  
Jesse Kustra ◽  
...  

BackgroundAs part of the public health outbreak investigations, serological surveys were carried out following two COVID-19 outbreaks in April 2020 and October 2020 in one long term care facility (LTCF) in British Columbia, Canada. This study describes the serostatus of the LTCF residents and monitors changes in their humoral response to SARS-CoV-2 and other human coronaviruses (HCoV) over seven months.MethodsA total of 132 serum samples were collected from all 106 consenting residents (aged 54-102) post-first outbreak (N=87) and post-second outbreak (N=45) in one LTCF; 26/106 participants provided their serum following both COVID-19 outbreaks, permitting longitudinal comparisons between surveys. Health-Canada approved commercial serologic tests and a pan-coronavirus multiplexed immunoassay were used to evaluate antibody levels against the spike protein, nucleocapsid, and receptor binding domain (RBD) of SARS-CoV-2, as well as the spike proteins of HCoV-229E, HCoV-HKU1, HCoV-NL63, and HCoV-OC43. Statistical analyses were performed to describe the humoral response to SARS-CoV-2 among residents longitudinally.FindingsSurvey findings demonstrated that among the 26 individuals that participated in both surveys, all 10 individuals seropositive after the first outbreak continued to be seropositive following the second outbreak, with no reinfections identified among them. SARS-CoV-2 attack rate in the second outbreak was lower (28.6%) than in the first outbreak (40.2%), though not statistically significant (P>0.05). Gradual waning of anti-nucleocapsid antibodies to SARS-CoV-2 was observed on commercial (median Δ=-3.7, P=0.0098) and multiplexed immunoassay (median Δ=-169579, P=0.014) platforms; however, anti-spike and anti-receptor binding domain (RBD) antibodies did not exhibit a statistically significant decline over 7 months. Elevated antibody levels for beta-HCoVs OC43 (P<0.0001) and HKU1 (P=0.0027) were observed among individuals seropositive for SARS-CoV-2 compared to seronegative individuals.ConclusionOur study utilized well-validated serological platforms to demonstrate that humoral responses to SARS-CoV-2 persisted for at least 7 months. Elevated OC43 and HKU1 antibodies among SARS-CoV-2 seropositive individuals may be attributed to cross reaction and/or boosting of humoral response.


Author(s):  
Lingshu Wang ◽  
Tongqing Zhou ◽  
Yi Zhang ◽  
Eun Sung Yang ◽  
Chaim A. Schramm ◽  
...  

AbstractThe emergence of highly transmissible SARS-CoV-2 variants of concern (VOC) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identify four receptor-binding domain targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 12 variants including the B.1.1.7 and B.1.351 VOCs. Two of them are ultrapotent, with sub-nanomolar neutralization titers (IC50 <0.0006 to 0.0102 μg/mL; IC80 < 0.0006 to 0.0251 μg/mL). We define the structural and functional determinants of binding for all four VOC-targeting antibodies, and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting potential means to mitigate resistance development. These results define the basis of therapeutic cocktails against VOCs and suggest that targeted boosting of existing immunity may increase vaccine breadth against VOCs.One Sentence SummaryUltrapotent antibodies from convalescent donors neutralize and mitigate resistance of SARS-CoV-2 variants of concern.


2021 ◽  
Author(s):  
Alexandra C Walls ◽  
Marcos C Miranda ◽  
Minh N Pham ◽  
Alexandra Schaefer ◽  
Allison Greaney ◽  
...  

Understanding the ability of SARS-CoV-2 vaccine-elicited antibodies to neutralize and protect against emerging variants of concern and other sarbecoviruses is key for guiding vaccine development decisions and public health policies. We show that a clinical stage multivalent SARS-CoV-2 receptor-binding domain nanoparticle vaccine (SARS-CoV-2 RBD-NP) protects mice from SARS-CoV-2-induced disease after a single shot, indicating that the vaccine could allow dose-sparing. SARS-CoV-2 RBD-NP elicits high antibody titers in two non-human primate (NHP) models against multiple distinct RBD antigenic sites known to be recognized by neutralizing antibodies. We benchmarked NHP serum neutralizing activity elicited by RBD-NP against a lead prefusion-stabilized SARS-CoV-2 spike immunogen using a panel of single-residue spike mutants detected in clinical isolates as well as the B.1.1.7 and B.1.351 variants of concern. Polyclonal antibodies elicited by both vaccines are resilient to most RBD mutations tested, but the E484K substitution has similar negative consequences for neutralization, and exhibit modest but comparable neutralization breadth against distantly related sarbecoviruses. We demonstrate that mosaic and cocktail sarbecovirus RBD-NPs elicit broad sarbecovirus neutralizing activity, including against the SARS-CoV-2 B.1.351 variant, and protect mice against severe SARS-CoV challenge even in the absence of the SARS-CoV RBD in the vaccine. This study provides proof of principle that sarbecovirus RBD-NPs induce heterotypic protection and enables advancement of broadly protective sarbecovirus vaccines to the clinic.


2021 ◽  
Author(s):  
Gary Baisa ◽  
David Rancour ◽  
Keith Mansfield ◽  
Monika Burns ◽  
Lori Martin ◽  
...  

Abstract BackgroundVaccines that generate robust and long-lived protective immunity against SARS-CoV-2 infection are urgently required. MethodsWe assessed the potential of vaccine candidates based on the SARS-CoV-2 spike in cynomolgus macaques (M. fascicularis) by examining their ability to generate spike binding antibodies with neutralizing activity. Antigens were derived from two distinct regions of the spike S1 subunit, either the N-terminal domain or an extended C-terminal domain containing the receptor-binding domain and were fused to the human IgG1 Fc domain. Three groups of 2 animals each were immunized with either antigen, alone or in combination. The development of antibody responses was evaluated through 20 weeks post-immunization. ResultsA robust IgG response to the spike protein was detected as early as 2 weeks after immunization with either protein and maintained for over 20 weeks. Sera from animals immunized with antigens derived from the RBD were able to prevent binding of soluble spike proteins to the ACE2 receptor, shown by in vitro binding assays, while sera from animals immunized with the N-terminal domain alone lacked this activity. Crucially, sera from animals immunized with the extended receptor binding domain but not the N-terminal domain had potent neutralizing activity against SARS-CoV-2 pseudotyped virus, with titers in excess of 10,000, greatly exceeding that typically found in convalescent humans. Neutralizing activity persisted for more than 20 weeks. ConclusionsThese data support the utility of spike subunit-based antigens as a vaccine for use in humans.


Author(s):  
Phuong Nguyen-Contant ◽  
A. Karim Embong ◽  
Preshetha Kanagaiah ◽  
Francisco A. Chaves ◽  
Hongmei Yang ◽  
...  

ABSTRACTThe high susceptibility of humans to SARS-CoV-2 infection, the cause of COVID-19, reflects the novelty of the virus and limited preexisting B cell immunity. IgG against the SARS-CoV-2 spike (S) protein, which carries the novel receptor binding domain (RBD), is absent or at low levels in unexposed individuals. To better understand the B cell response to SARS-CoV-2 infection, we asked whether virus-reactive memory B cells (MBCs) were present in unexposed subjects and whether MBC generation accompanied virus-specific IgG production in infected subjects. We analyzed sera and PBMCs from non-SARS-CoV-2-exposed healthy donors and COVID-19 convalescent subjects. Serum IgG levels specific for SARS-CoV-2 proteins (S, including the RBD and S2 subunit, and nucleocapsid [N]) and non-SARS-CoV-2 proteins were related to measurements of circulating IgG MBCs. Anti-RBD IgG was absent in unexposed subjects. Most unexposed subjects had anti-S2 IgG and a minority had anti-N IgG, but IgG MBCs with these specificities were not detected, perhaps reflecting low frequencies. Convalescent subjects had high levels of IgG against the RBD, S2, and N, together with large populations of RBD- and S2-reactive IgG MBCs. Notably, IgG titers against the S protein of the human coronavirus OC43 in convalescent subjects were higher than in unexposed subjects and correlated strongly with anti-S2 titers. Our findings indicate cross-reactive B cell responses against the S2 subunit that might enhance broad coronavirus protection. Importantly, our demonstration of MBC induction by SARS-CoV-2 infection suggests that a durable form of B cell immunity is maintained even if circulating antibody levels wane.IMPORTANCERecent rapid worldwide spread of SARS-CoV-2 has established a pandemic of potentially serious disease in the highly susceptible human population. Key questions are whether humans have preexisting immune memory that provides some protection against SARS-CoV-2 and whether SARS-CoV-2 infection generates lasting immune protection against reinfection. Our analysis focused on pre- and post-infection IgG and IgG memory B cells (MBCs) reactive to SARS-CoV-2 proteins. Most importantly, we demonstrate that infection generates both IgG and IgG MBCs against the novel receptor binding domain and the conserved S2 subunit of the SARS-CoV-2 spike protein. Thus, even if antibody levels wane, long-lived MBCs remain to mediate rapid antibody production. Our study also suggests that SARS-CoV-2 infection strengthens preexisting broad coronavirus protection through S2-reactive antibody and MBC formation.


2021 ◽  
Author(s):  
Delphine Planas ◽  
Nell Saunders ◽  
Piet Maes ◽  
Florence Guivel Benhassine ◽  
Cyril Planchais ◽  
...  

The SARS-CoV-2 Omicron variant was first identified in November 2021 in Botswana and South Africa. It has in the meantime spread to many countries and is expected to rapidly become dominant worldwide. The lineage is characterized by the presence of about 32 mutations in the Spike, located mostly in the N-terminal domain (NTD) and the receptor binding domain (RBD), which may enhance viral fitness and allow antibody evasion. Here, we isolated an infectious Omicron virus in Belgium, from a traveller returning from Egypt. We examined its sensitivity to 9 monoclonal antibodies (mAbs) clinically approved or in development, and to antibodies present in 90 sera from COVID-19 vaccine recipients or convalescent individuals. Omicron was totally or partially resistant to neutralization by all mAbs tested. Sera from Pfizer or AstraZeneca vaccine recipients, sampled 5 months after complete vaccination, barely inhibited Omicron. Sera from COVID-19 convalescent patients collected 6 or 12 months post symptoms displayed low or no neutralizing activity against Omicron. Administration of a booster Pfizer dose as well as vaccination of previously infected individuals generated an anti-Omicron neutralizing response, with titers 5 to 31 fold lower against Omicron than against Delta. Thus, Omicron escapes most therapeutic monoclonal antibodies and to a large extent vaccine-elicited antibodies.


Author(s):  
Stuart J Moat ◽  
Wioleta M Zelek ◽  
Emily Carne ◽  
Mark J Ponsford ◽  
Kathryn Bramhall ◽  
...  

Background Serological assays for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) have roles in seroepidemiology, convalescent plasma-testing, antibody durability and vaccine studies. Currently, SARS-CoV-2 serology is performed using serum/plasma collected by venepuncture. Dried blood spot (DBS) testing offers significant advantages as it is minimally invasive, avoids venepuncture with specimens being mailed to the laboratory. Methods A pathway utilizing a newborn screening laboratory infrastructure was developed using an enzyme-linked immunosorbent assay to detect IgG antibodies against the receptor-binding domain of the SARS-CoV-2 spike protein in DBS specimens. Paired plasma and DBS specimens from SARS-CoV-2 antibody-positive and -negative subjects and polymerase chain reaction positive subjects were tested. DBS specimen stability, effect of blood volume and punch location were also evaluated. Results DBS specimens from antibody-negative ( n = 85) and -positive ( n = 35) subjects and polymerase chain reaction positive subjects ( n = 11) had a mean (SD; range) optical density (OD) of 0.14 (0.046; 0.03–0.27), 0.98 (0.41; 0.31–1.64) and 1.12 (0.37; 0.49–1.54), respectively. An action value OD >0.28 correctly assigned all cases. The weighted Deming regression for comparison of the DBS and the plasma assay yielded: y = 0.004041 + 1.005 x, r = 0.991, Sy/ x 0.171, n = 82. Extraction efficiency of antibodies from DBS specimens was >99%. DBS specimens were stable for at least 28 days at ambient room temperature and humidity. Conclusions SARS-CoV-2 IgG receptor-binding domain antibodies can be reliably detected in DBS specimens. DBS serological testing offers lower costs than either point of care or serum/plasma assays that require patient travel, phlebotomy and hospital/clinic resources; the development of a DBS assay may be particularly important for resource poor settings.


2020 ◽  
Vol 9 (12) ◽  
pp. 3989
Author(s):  
Anna Schaffner ◽  
Lorenz Risch ◽  
Stefanie Aeschbacher ◽  
Corina Risch ◽  
Myriam C. Weber ◽  
...  

Pan-immunoglobulin assays can simultaneously detect IgG, IgM and IgA directed against the receptor binding domain (RBD) of the S1 subunit of the spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 S1-RBD Ig). In this work, we aim to evaluate a quantitative SARS-CoV-2 S1-RBD Ig electrochemiluminescence immunoassay (ECLIA) regarding analytical, diagnostic, operational and clinical characteristics. Our work takes the form of a population-based study in the principality of Liechtenstein, including 125 cases with clinically well-described and laboratory confirmed SARS-CoV-2 infection and 1159 individuals without evidence of coronavirus disease 2019 (COVID-19). SARS-CoV-2 cases were tested for antibodies in sera taken with a median of 48 days (interquartile range, IQR, 43–52) and 139 days (IQR, 129–144) after symptom onset. Sera were also tested with other assays targeting antibodies against non-RBD-S1 and -S1/S2 epitopes. Sensitivity was 97.6% (95% confidence interval, CI, 93.2–99.1), whereas specificity was 99.8% (95% CI, 99.4–99.9). Antibody levels linearly decreased from hospitalized patients to symptomatic outpatients and SARS-CoV-2 infection without symptoms (p < 0.001). Among cases with SARS-CoV-2 infection, smokers had lower antibody levels than non-smokers (p = 0.04), and patients with fever had higher antibody levels than patients without fever (p = 0.001). Pan-SARS-CoV-2 S1-RBD Ig in SARS-CoV-2 infection cases significantly increased from first to second follow-up (p < 0.001). A substantial proportion of individuals without evidence of past SARS-CoV-2 infection displayed non-S1-RBD antibody reactivities (248/1159, i.e., 21.4%, 95% CI, 19.1–23.4). In conclusion, a quantitative SARS-CoV-2 S1-RBD Ig assay offers favorable and sustained assay characteristics allowing the determination of quantitative associations between clinical characteristics (e.g., disease severity, smoking or fever) and antibody levels. The assay could also help to identify individuals with antibodies of non-S1-RBD specificity with potential clinical cross-reactivity to SARS-CoV-2.


Author(s):  
Yoshitomo Morinaga ◽  
Hideki Tani ◽  
Yasushi Terasaki ◽  
Satoshi Nomura ◽  
Hitoshi Kawasuji ◽  
...  

This study provides a diagnostic evidence of test validity, which can lead to vaccine efficacy and proof of recovery after COVID-19. It is not easy to know neutralization against SARS-CoV-2 in the clinical laboratory because of technical and biohazard issues.


Author(s):  
Jéromine Klingler ◽  
Svenja Weiss ◽  
Vincenza Itri ◽  
Xiaomei Liu ◽  
Kasopefoluwa Y. Oguntuyo ◽  
...  

AbstractBackgroundSARS-CoV-2 has infected millions of people globally. Virus infection requires the receptor-binding domain (RBD) of the spike protein. Although studies have demonstrated anti-spike and - RBD antibodies to be protective in animal models, and convalescent plasma as a promising therapeutic option, little is known about immunoglobulin (Ig) isotypes capable of blocking infection.MethodsWe studied spike- and RBD-specific Ig isotypes in convalescent and acute plasma/sera using a multiplex bead assay. We also determined virus neutralization activities in plasma, sera, and purified Ig fractions using a VSV pseudovirus assay.ResultsSpike- and RBD-specific IgM, IgG1, and IgA1 were produced by all or nearly all subjects at variable levels and detected early after infection. All samples displayed neutralizing activity. Regression analyses revealed that IgM and IgG1 contributed most to neutralization, consistent with IgM and IgG fractions’ neutralization potency. IgA also exhibited neutralizing activity, but with lower potency.ConclusionIgG, IgM and IgA are critical components of convalescent plasma used for COVID-19 treatment.Summary of main pointsIgM, IgG1 and IgA1 antibodies against SARS-CoV-2 spike glycoprotein and its receptor-binding domain are present in convalescent COVID-19 plasma. Like IgG, IgM and IgA contribute to virus neutralization, providing the basis for optimal selection of convalescent plasma for COVID-19 treatment.


Sign in / Sign up

Export Citation Format

Share Document