scholarly journals MyD88-dependent TLR signaling oppositely regulates hematopoietic progenitor and stem cell formation in the embryo

2021 ◽  
Author(s):  
Nancy A Speck ◽  
Laura F Bennett ◽  
Melanie D Mumau ◽  
Yan Li

Hemogenic endothelial (HE) cells in the dorsal aorta undergo an endothelial to hematopoietic transition (EHT) to form lympho-myeloid biased progenitors (LMPs), pre-hematopoietic stem cells (pre-HSCs) and adult-repopulating HSCs. These briefly accumulate in intra-arterial hematopoietic clusters (IAHCs) before being released into the circulation. It is generally assumed that the number of IAHC cells correlates with the number of HSCs. Here we show that changes in the number of IAHC cells, LMPs, and HSCs can be uncoupled. Mutations impairing MyD88-dependent toll-like receptor (TLR) signaling decreased the number of IAHC cells and LMPs but increased the number of HSCs in the aorta-gonad-mesonephros region of mouse embryos. TLR4 deficient embryos specified normal numbers of HE cells but the proliferation of IAHC cells was decreased. Loss of MyD88-dependent TLR signaling in innate immune myeloid cells had no effect on IAHC cell numbers. However, TLR4 deletion in endothelial cells recapitulated the phenotype observed with germline deletion, demonstrating that MyD88-dependent TLR signaling in endothelial cells and/or in IAHCs regulates the balance between generating LMPs and HSCs.

2018 ◽  
Vol 92 (13) ◽  
pp. e02246-17 ◽  
Author(s):  
Shintaro Yamada ◽  
Masayuki Shimojima ◽  
Ryo Narita ◽  
Yuta Tsukamoto ◽  
Hiroki Kato ◽  
...  

ABSTRACT Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by a tick-borne phlebovirus of the family Bunyaviridae, SFTS virus (SFTSV). Wild-type and type I interferon (IFN-I) receptor 1-deficient (IFNAR1−/−) mice have been established as nonlethal and lethal models of SFTSV infection, respectively. However, the mechanisms of IFN-I production in vivo and the factors causing the lethal disease are not well understood. Using bone marrow-chimeric mice, we found that IFN-I signaling in hematopoietic cells was essential for survival of lethal SFTSV infection. The disruption of IFN-I signaling in hematopoietic cells allowed an increase in viral loads in serum and produced an excess of multiple inflammatory cytokines and chemokines. The production of IFN-I and inflammatory cytokines was abolished by deletion of the signaling molecules IPS-1 and MyD88, essential for retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) and Toll-like receptor (TLR) signaling, respectively. However, IPS-1−/− MyD88−/− mice exhibited resistance to lethal SFTS with a moderate viral load in serum. Taken together, these results indicate that adequate activation of RLR and TLR signaling pathways under low to moderate levels of viremia contributed to survival through the IFN-I-dependent antiviral response during SFTSV infection, whereas overactivation of these signaling pathways under high levels of viremia resulted in abnormal induction of multiple inflammatory cytokines and chemokines, causing the lethal disease. IMPORTANCE SFTSV causes a severe infectious disease in humans, with a high fatality rate of 12 to 30%. To know the pathogenesis of the virus, we need to clarify the innate immune response as a front line of defense against viral infection. Here, we report that a lethal animal model showed abnormal induction of multiple inflammatory cytokines and chemokines by an uncontrolled innate immune response, which triggered the lethal SFTS. Our findings suggest a new strategy to target inflammatory humoral factors to treat patients with severe SFTS. Furthermore, this study may help the investigation of other tick-borne viruses.


2004 ◽  
Vol 24 (5) ◽  
pp. 1870-1883 ◽  
Author(s):  
Berthold Göttgens ◽  
Cyril Broccardo ◽  
Maria-Jose Sanchez ◽  
Sophie Deveaux ◽  
George Murphy ◽  
...  

ABSTRACT Analysis of cis-regulatory elements is central to understanding the genomic program for development. The scl/tal-1 transcription factor is essential for lineage commitment to blood cell formation and previous studies identified an scl enhancer (the +18/19 element) which was sufficient to target the vast majority of hematopoietic stem cells, together with hematopoietic progenitors and endothelium. Moreover, expression of scl under control of the +18/19 enhancer rescued blood progenitor formation in scl−/− embryos. However, here we demonstrate by using a knockout approach that, within the endogenous scl locus, the +18/19 enhancer is not necessary for the initiation of scl transcription or for the formation of hematopoietic cells. These results led to the identification of a bifunctional 5′ enhancer (−3.8 element), which targets expression to hematopoietic progenitors and endothelium, contains conserved critical Ets sites, and is bound by Ets family transcription factors, including Fli-1 and Elf-1. These data demonstrate that two geographically distinct but functionally related enhancers regulate scl transcription in hematopoietic progenitors and endothelial cells and suggest that enhancers with dual hematopoietic-endothelial activity may represent a general strategy for regulating blood and endothelial development.


Blood ◽  
2003 ◽  
Vol 102 (13) ◽  
pp. 4345-4353 ◽  
Author(s):  
Weiming Li ◽  
Scott A. Johnson ◽  
William C. Shelley ◽  
Michael Ferkowicz ◽  
Paul Morrison ◽  
...  

AbstractThe embryonic origin and development of hematopoietic and endothelial cells is highly interdependent. We hypothesized that primary endothelial cells from murine yolk sac and para-aortic splanchnopleura (P-Sp) may possess the capacity to expand hematopoietic stem cells (HSCs) and progenitor cells ex vivo. Using Tie2-GFP transgenic mice in combination with fluorochrome-conjugated monoclonal antibodies to vascular endothelial growth factor receptor-2 (Flk1) and CD41, we have successfully isolated pure populations of primary endothelial cells from 9.5-days after coitus (dpc) yolk sac and P-Sp. Adult murine bone marrow Sca-1+c-Kit+lin- cells were cocultured with yolk sac or P-Sp Tie2-GFP+Flk-1+CD41- endothelial cell monolayers for 7 days and the total number of nonadherent cells increased 47- and 295-fold, respectively, and hematopoietic progenitor counts increased 9.4- and 11.4-fold, respectively. Both the yolk sac and P-Sp endothelial cell cocultures facilitated long-term (> 6 months) HSC competitive repopulating ability (2.8- to 9.8-fold increases, respectively). These data suggest that 9.5-dpc yolk sac- and P-Sp-derived primary Tie2-GFP+Flk-1+CD41- endothelial cells possess the capacity to expand adult bone marrow hematopoietic progenitor cell and HSC repopulating ability ex vivo. (Blood. 2003;102:4345-4353)


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2372-2372
Author(s):  
Jenna M. Frame ◽  
Katherine H. Fegan ◽  
Seana C. Catherman ◽  
Joanna Tober ◽  
Anne D. Koniski ◽  
...  

Abstract In the adult, the proto-oncogene Myb critically regulates both the maintenance of hematopoiesis and the differentiation of several hematopoietic lineages. Myb-/- mouse embryos die by embryonic day (E) 15 with severe anemia due to the absence of definitive erythropoiesis (Mucenski et al., Cell, 1991). Similarly, zebrafish embryos lacking myb do not express adult globin genes, have a reduction in other mature hematopoietic lineages by 48 hours post fertilization, and maintain a bloodless phenotype through adulthood (Soza-Ried et al., PNAS, 2010). These and other data have led to the concept that Myb-/- embryos entirely lack definitive hematopoiesis. In both mouse and zebrafish embryos, the first definitive hematopoietic potential arises as a hematopoietic stem cell (HSC)-independent wave of erythro-myeloid progenitors (EMPs). EMPs emerge in the murine yolk sac beginning at E8.25, partially overlapping with an earlier wave of primitive hematopoietic progenitors. We previously demonstrated that EMPs are multipotent progenitors, and are the major source of definitive erythroid potential in the early fetal liver, prior to the colonization of adult-repopulating HSCs (McGrath et al., Blood, 2011). Recently, we identified a unique cell surface phenotype that facilitates the prospective isolation of murine definitive EMPs, distinguishing them from primitive hematopoietic progenitors and maturing populations of megakaryocytes and macrophages in the yolk sac (McGrath et al., Cell Reports, 2015). We detected expression of Myb in sorted EMPs, suggesting that Myb may regulate the emergence and/or differentiation of EMPs. We tested this hypothesis by assessing the emergence, hematopoietic potential and expansion capacity of EMPs, compared with other maturing primitive hematopoietic lineages, in Myb-/- mouse embryos. Consistent with the proposed Myb-independence of the earlier wave of primitive progenitors, we observed normal numbers of maturing macrophages in E9.5 Myb-/- yolk sacs. Interestingly, E9.5 Myb-/- yolk sacs also contained normal numbers of immunophenotypic EMPs. These EMPs were present in hemogenic endothelial-derived clusters expressing Runx1, similar to littermate controls, suggesting that Myb is dispensable for EMP emergence from hemogenic endothelium. We next assessed the differentiation capability of Myb-/- EMPs in vitro. E9.5 Myb-/- yolk sacs lacked high proliferative colony-forming potential (HPP-CFC), a hallmark of immature definitive hematopoietic progenitors. In addition, both definitive erythroid and granulocyte colony-forming potential were absent in methylcellulose cultures of sorted Myb-/- EMPs, in contrast to littermate controls. Surprisingly, however, sorted Myb-/- EMPs gave rise to macrophage progenitors in colony-forming assays, and CD11b+ F4/80+ macrophages in differentiation cultures. These data indicate that Myb is not required for the differentiation of primary definitive EMPs into macrophages. Analysis of Myb-/- fetal liversalso confirmed the presence of F4/80+ macrophages. While these fetal liver macrophages have been previously proposed to be of primitive hematopoietic origin, our data raise the possibility that they may also be derived from EMPs. Further analysis of in vitro differentiation cultures demonstrated an inability of sorted Myb-/- EMPs to proliferate when compared with normal littermates, although these cultures still generated small numbers of macrophages. It is not yet clear whether this reduction in proliferation is due solely to the loss of differentiation of multiple hematopoietic lineages, or is also due to defective maintenance or expansion of EMPs. However, consistent with a role for Myb in continued emergence and/or expansion of EMPs, we observed a reduction in the total number of EMPs by E10.5 in yolk sacs of Myb-/- embryos compared with normal littermates. Taken together, these data indicate that Myb is a critical regulator not only of HSCs, but also of HSC-independent definitive hematopoietic progenitors (EMPs). While Myb is dispensable for the initial emergence of EMPs, it is required for their subsequent differentiation into erythroid and granulocyte lineages. Surprisingly, the persistence of EMPs, while reduced, may provide a source of definitive macrophages in Myb-/- embryos. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
pp. 1-12
Author(s):  
Tadaatsu Imaizumi ◽  
Shun Hashimoto ◽  
Riko Sato ◽  
Hidenori Umetsu ◽  
Tomomi Aizawa ◽  
...  

Introduction: Various viruses including a novel coronavirus (SARS-CoV-2) can infect the kidney. When viruses invade the glomeruli from the bloodstream, glomerular endothelial cells (GECs) initiate the innate immune reactions. We investigated the expression of interferon (IFN)-induced protein with tetratricopeptide repeats (IFIT) 1/2/3, antiviral molecules, in human GECs treated with a toll-like receptor (TLR) 3 agonist. Role of IFIT1/2/3 in the expression of C-X-C motif chemokine ligand 10 (CXCL10) was also examined. Methods: Human GECs were cultured and stimulated with polyinosinic-polycytidylic acid (poly IC), a synthetic TLR3 agonist. Real-time qPCR, Western blotting, and ELISA were used to examine the expression of IFIT1/2/3, IFN-β, and CXCL10. RNA interference against IFN-β or IFIT1/2/3 was also performed. Results: Expression of IFIT1/2/3 and CXCL10 was induced by poly IC in GECs. The inductions were inhibited by RNA interfering of IFN-β. Knockdown of IFIT1/2/3 decreased the CXCL10 expression. Knockdown of IFIT3 decreased the expression of IFIT1 and IFIT2 proteins. Conclusion: IFIT1/2/3 and CXCL10 were induced by poly IC via IFN-β in GECs. IFIT1/2/3 may increase the expression of CXCL10 which induces lymphocyte chemotaxis and may inhibit the replication of infected viruses. These molecules may play a role in GEC innate immune reactions in response to viruses.


2020 ◽  
Vol 245 (14) ◽  
pp. 1254-1259
Author(s):  
Melanie Märklin ◽  
Stefanie Bugl ◽  
Stefan Wirths ◽  
Julia-Stefanie Frick ◽  
Martin R Müller ◽  
...  

While neutrophil production in emergency states has been extensively studied, regulation of neutrophil homeostasis in the steady-state remained incompletely understood. We have shown that innate immune receptor toll-like receptor (TLR)4 and downstream TIR-domain-containing adapter-inducing interferon-β (TRIF) are indispensable for the generation of a granulocyte-colony stimulating factor (G-CSF)-dependent regulatory feedback loop upon antibody-induced neutropenia. These findings demonstrated that steady-state granulopoiesis is a demand-driven process, which may rely on differential triggering of innate immune receptors by microbial cell wall constituents such as lipopolysaccharide. Herein, we present further evidence on underlying mechanisms: oral intake of highly endotoxic lipopolysaccharide, but not TLR-antagonistic lipopolysaccharide derived from Rhodobacter sphaeroides, induces hematopoietic stem and progenitor cell fate decisions toward the neutrophil lineage independent of G-CSF. TLR4 has been identified as the indispensable sensor for oral lipopolysaccharide-modulated steady-state granulopoiesis. These results have important implications: food lipopolysaccharide content or the composition of the gastrointestinal microbiome may be strongly underrated as determinants of peripheral blood neutrophil levels. Both neutrophilia and neutropenia are associated with drastically worse outcomes in epidemiological studies of the general population as well as in diseased states. Impact statement In our present study, we investigated the impact of LPS on neutrophil homeostasis and found that oral intake is sufficient to induce hematopoietic stem and progenitor cell fate decisions towards the neutrophil lineage independent of G-CSF. In addition, TLR4 has been identified as the indispensable sensor for oral LPS-modulated steady-state granulopoiesis. We provide evidence that the gastrointestinal microbiome is critical for neutrophil homeostasis, which has implications for patients being treated with chemotherapy or antimicrobial therapy, since both are significantly influencing the composition of the intestinal microbiome.


Blood ◽  
2004 ◽  
Vol 103 (9) ◽  
pp. 3603-3605 ◽  
Author(s):  
Alexander Woywodt ◽  
Johanna Scheer ◽  
Lothar Hambach ◽  
Stefanie Buchholz ◽  
Arnold Ganser ◽  
...  

Abstract Damage to endothelial cells is the common feature of vascular disorders associated with hematopoietic stem cell transplantation (HSCT). Elevated numbers of circulating endothelial cells reflect the extent of endothelial damage in a variety of disorders but their use in HSCT has not been investigated so far. We studied 39 patients undergoing allogeneic HSCT with different conditioning regimens and 22 healthy controls. Circulating endothelial cells were enumerated with immunomagnetic isolation during the course of HSCT. After conditioning, cell numbers were significantly elevated (median 44 cells/mL) compared with baseline (median 16 cells/mL) and controls (median 8 cells/mL). Patients who received radiation had an earlier peak when compared with patients who received chemotherapy. Patients who received reduced-intensity conditioning had significantly lower cell numbers (median 24 cells/mL) than those who received standard conditioning. These observations provide a novel marker to investigate microvascular endothelial damage and the effects of different conditioning regimens in patients undergoing HSCT. (Blood. 2004;103:3603-3605)


Blood ◽  
2010 ◽  
Vol 115 (23) ◽  
pp. 4934-4943 ◽  
Author(s):  
Maite Urbieta ◽  
Isabel Barao ◽  
Monica Jones ◽  
Roland Jurecic ◽  
Angela Panoskaltsis-Mortari ◽  
...  

Abstract CD4+CD25+FoxP3+ regulatory T cells (Tregs) possess the capacity to modulate both adaptive and innate immune responses. We hypothesized that Tregs could regulate hematopoiesis based on cytokine effector molecules they can produce. The studies here demonstrate that Tregs can affect the differentiation of myeloid progenitor cells. In vitro findings demonstrated the ability of Tregs to inhibit the differentiation of interleukin-3 (IL-3)/stem cell factor (colony-forming unit [CFU]-IL3)–driven progenitor cells. Inhibitory effects were mediated by a pathway requiring cell-cell contact, major histocompatibility complex class II expression on marrow cells, and transforming growth factor-β. Importantly, depletion of Tregs in situ resulted in enhanced CFU-IL3 levels after bone marrow transplantation. Cotransplantation of CD4+FoxP3+gfp Tregs together with bone marrow was found to diminish CFU-IL3 responses after transplantation. To address the consequence of transplanted Tregs on differentiated progeny from these CFU 2 weeks after hematopoietic stem cell transplantation, peripheral blood complete blood counts were performed and examined for polymorphonuclear leukocyte content. Recipients of cotransplanted Tregs exhibited diminished neutrophil counts. Together, these findings illustrate that both recipient and donor Tregs can influence hematopoietic progenitor cell activity after transplantation and that these cells can alter responses outside the adaptive and innate immune systems.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Daniel J. Loegering ◽  
Michelle R. Lennartz

Protein kinase C (PKC) is a family of kinases that are implicated in a plethora of diseases, including cancer and cardiovascular disease. PKC isoforms can have different, and sometimes opposing, effects in these disease states. Toll-like receptors (TLRs) are a family of pattern recognition receptors that bind pathogens and stimulate the secretion of cytokines. It has long been known that PKC inhibitors reduce LPS-stimulated cytokine secretion by macrophages, linking PKC activation to TLR signaling. Recent studies have shown that PKC-α, -δ, -ε, and -ζ are directly involved in multiple steps in TLR pathways. They associate with the TLR or proximal components of the receptor complex. These isoforms are also involved in the downstream activation of MAPK, RhoA, TAK1, and NF-κB. Thus, PKC activation is intimately involved in TLR signaling and the innate immune response.


Sign in / Sign up

Export Citation Format

Share Document