scholarly journals Met-HER3 crosstalk supports proliferation via MPZL3 in MET-amplified cancer cells

2021 ◽  
Author(s):  
Yaakov Elisha Stern ◽  
Stephanie Duhamel ◽  
Abdulhameed Al-Ghabkari ◽  
Anie Monast ◽  
Benoit Fiset ◽  
...  

Receptor tyrosine kinases (RTKs) are recognized as targets of precision medicine in human cancer upon their gene amplification or constitutive activation, resulting in increased downstream signal complexity including heterotypic crosstalk with other RTKs. The Met RTK exhibits such reciprocal crosstalk with several members of the human EGFR (HER) family of RTKs when amplified in cancer cells. We show that Met signaling converges on HER3 tyrosine phosphorylation across a panel of seven MET-amplified cancer cell lines and that HER3 is required for cancer cell expansion and oncogenic capacity in-vitro and in-vivo. Gene expression analysis of HER3-depleted cells identified MPZL3, encoding a single-pass transmembrane protein, as a HER3-dependent effector in multiple MET-amplified cancer cell lines. MPZL3 interacts with HER3 and MPZL3 loss phenocopies HER3 loss in MET-amplified cells, while MPZL3 overexpression rescues proliferation upon HER3 depletion. Together, these data support an oncogenic role for a HER3-MPZL3 axis in MET-amplified cancers.

2020 ◽  
Vol 19 (6) ◽  
pp. 790-799
Author(s):  
Miryam Chiara Malacarne ◽  
Stefano Banfi ◽  
Enrico Caruso

Two new aza-BODIPY photosensitizers featuring an iodine atom on each pyrrolic unit of their structure, were synthesized in fairly good yields and tested in vitro on two human cancer cell lines to assess their photodynamic efficacy.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3773-3773
Author(s):  
Nina Mohell ◽  
Charlotta Liljebris ◽  
Jessica Alfredsson ◽  
Ylva Lindman ◽  
Maria Uustalu ◽  
...  

Abstract Abstract 3773 Poster Board III-709 Introduction The tumor suppressor protein p53 induces cell cycle arrest and/or apoptosis in response to various forms of cellular stress, through transcriptional regulation of a large number of down stream target genes. p53 is frequently mutated in cancer, and cancer cells carrying defects in the p53 protein are often more resistant to conventional chemotherapy. Thus, restoration of the wild type function to mutant p53 appears to be a new attractive strategy for cancer therapy. APR-246 is a novel small molecule quinuclidinone compound that has been shown to reactivate non-functional p53 and induce apoptosis. Although the exact molecular mechanism remains to be determined, recent results suggest that an active metabolite of APR-246 alkylates thiol groups in the core domain of p53, which promotes correct folding of p53 and induces apoptosis (Lambert et al., Cancer Cell 15, 2009). Currently, APR-246 is in Phase I/IIa clinical trials for hematological malignancies and prostate cancer. In the present abstract results from in vitro, ex vivo and in vivo preclinical studies with APR-246 are presented. Results The lead compound of APR-246, PRIMA-1 (p53 reactivation and induction of massive apoptosis), was originally identified by a cellular screening of the NCI library for low molecular weight compounds (Bykov et al., Nat. Med., 8, 2002). Further development and optimization of PRIMA-1 led to the discovery of the structural analog APR-246 (PRIMA-1MET), with improved drug like and preclinical characteristics. In in vitro experiments APR-246 reduced cell viability (WST-1 assay) in a large number of human cancer cell lines with various p53 status, including several leukemia (CCRF-CEM, CEM/VM-1, KBM3), lymphoma (U-937 GTP, U-937-vcr), and myeloma (RPMI 8226/S, 8226/dox40, 8226/LR5) cell lines, as well as many solid cancer cell lines, including osteosarcoma (SaOS-2, SaOS-2-His273,U-2OS), prostate (PC3, PC3-His175, 22Rv1), breast (BT474, MCF-7, MDA-MB-231), lung (H1299, H1299-His175) and colon cancer (HT-29). In human osteosarcoma cell lines APR-246 reduced cell viability and induced apoptosis (FLICA caspase assay) in a concentration dependent manner being more potent in the p53 mutant (SaOS-2-His273) than in the parental p53 null (SaOS-2) cells. The IC50 values (WST-1 assay) were 14 ± 3 and 27 ± 5 μM, respectively (n=35). In in vivo subcutaneous xenograft studies in SCID (severe combined immunodeficiency) mice APR-246 reduced growth of p53 mutant SaOS-2-His273 cells in a dose-dependent manner, when injected i.v. twice daily with 20 -100 mg/kg (64 – 76% inhibition). An in vivo anticancer effect of APR-246 was also observed in hollow-fiber test with NMRI mice using the acute myeloid leukemia (AML) cell line MV-4-11. An ex vivo cytotoxic effect of APR-246 and/or its lead compound PRIMA-1 has also been shown in primary cells from AML and CLL (chronic lymphocytic leukemia) patients, harbouring both hemizygously deleted p53 as well as normal karyotype (Nahi et al., Br. J. Haematol., 127, 2004; Nahi et al., Br. J. Haematol., 132, 2005; Jonsson-Videsater et al., abstract at this meeting). APR-246 was also tested in a FMCA (fluorometric microculture assay) test using normal healthy lymphocytes (PBMC) and cancer lymphocytes (CLL). It was 4-8 fold more potent in killing cancer cells than normal cells, indicating a favorable therapeutic index. This is in contrast to conventional cytostatics that often show negative ratio in this test. Furthermore, when tested in a well-defined panel of 10 human cancer cell lines consisting of both hematological and solid cancer cell lines, the cytotoxicity profile/activity pattern of APR-246 differed from common chemotherapeutic drugs (correlation coefficient less than 0.4), suggesting a different mechanism of action. Conclusion In relevant in vitro, in vivo and ex vivo cancer models, APR-246 showed unique pharmacological properties in comparison with conventional cytostatics, by being effective also in cancer cells with p53 mutations and by demonstrating tumor specificity. Moreover, in experimental safety/toxicology models required to start clinical trials, APR-246 was non toxic at the predicted therapeutic plasma concentrations. Thus, APR-246 appears to be a promising novel anticancer compound that may specifically target cancer cells in patients with genetic abnormality associated with poor prognosis. Disclosures: Mohell: Aprea AB: Employment. Liljebris:Aprea AB: Employment. Alfredsson:Aprea AB: Employment. Lindman:Aprea AB: Employment. Uustalu:Aprea AB: Employment. Wiman:Aprea AB: Co-founder, shareholder, and member of the board. Uhlin:Aprea AB: Employment.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 14515-14515
Author(s):  
V. Dangles-Marie ◽  
P. Validire ◽  
S. Richon ◽  
L. Weiswald ◽  
M. Briffod ◽  
...  

14515 Background: In vitro spheroid model using cancer cell lines is widely admitted to mimic in vivo micro tumors, including micrometastases. Floating spheroid cell cluster culture has been recently used for normal and cancer stem cell expansion. Spontaneously spheroids generated in vivo have been only studied in ovarian cancer ascites while organoid aggregates have been sometimes observed in the establishment of human colon cancer cell lines. In this study, we investigated whether spontaneous spheroid aggregates from colon cancer could be isolated and characterized. Methods: 127 colorectal primary tumor specimens have been collected and mechanically dissociated into small fragments, which were then shortly cultured on cell plastic flask. Production of spheroid- like structures, referred to as colospheres, was examined at Day 1 and colospheres were gathered for phenotypic characterization. Results: Colospheres were successfully generated from 67 surgical specimens (53%). The capacity to form colospheres was strictly restricted to tumor tissue: dissociated normal colon mucosa never generated colospheres and colospheres were formed exclusively by cancer cells. The ability to generate colospheres was demonstrated to be significantly related to tumor aggressiveness, according to nodal status and AJCC’s stages (Chi-2 test, p<0.05). Immunohistochemical studies showed that cells forming colospheres were frequently positive for Ki67, and displayed often a disturbed expression of the epithelial caretaker E-cadherin. Peripheral cells of colospheres were able to migrate into Matrigel in absence of any chemoattractant. Conclusions: Collectively, the morphology of these colospheres derived directly from tumoral tissues and made up exclusively of cancer cells, their potential capacity to acquire an epithelial-to-mesenchymal transition phenotype and their in vitro migration ability could be aligned with the collective migration properties of carcinomas. Consequently, these ex vivo spherical structures might form an in vitro cell system for micrometastasis studies, at the very time when mortality among colorectal cancer patients continues to be attributed to metastasis development. No significant financial relationships to disclose.


2021 ◽  
Vol 8 (5) ◽  
pp. 01-10
Author(s):  
Hassan A. Al-Shamahy

Background and aims: Natural products, especially plant extracts, have opened up great opportunities in the field of drug progress due to their chemical variety. The genus Aloe has long been used for medicinal uses in countless parts of the world. This study was designed to investigate the phytochemicals and anti-cancer capabilities of Aloe rubroviolaceae, Aloe vera and Aloe sabaea flowers. Materials and Methods: The methanolic extracts of three types of plants traditionally used in Yemen to treat a variety of diseases have been tested in vitro for their potential anticancer activity on different human cancer cell lines. The cytotoxic activity of the methanolic extracts of tested plants was determined using eleven strains of human cancer cells, namely: MCF-7 (breast cancer), PC-3 (prostate cancer), HEP-2 (human epithelial carcinoma), MNFS-60 (myelogenous leukemia), CACO (intestinal cancer), A-549 (lung adenocarcinoma), HeLa (cervical cancer), RD (rhabdomyosarcoma),HepG2 (hepatocellular carcinoma), HCT-116 (colon cancer), and CHO-K1 (Chinese hamster ovary). A colorimetric sulforhodamine B assay was used to evaluate the in vitro cytotoxic activity of different extracts. Growth inhibition of 50% (IC50) for each extract was calculated from the optical density of treated and untreated cells. Doxorubicin, a broad-spectrum anticancer drug was used as a positive control. Results: More interesting cytotoxic activity was observed for Aloe vera extract more than Aloe sabaea and Aloe rubroviolaceae, extract. Conclusions: This study provides a preliminary screening for anti-proliferative activity of various Aloe species flowers extracts on different cancer cell lines. Different extracts of Aloe species significantly inhibit the growth of various cancer cell lines in a concentration-dependent manner. Further investigations are required to understand the possible mechanism(s) of action of these extract on various cancer cells and isolation of active phyto-chemicals.


Author(s):  
Hassan Mohammed Al-Mahbashi ◽  
Mohammad Abobakr Al-Ghazali ◽  
Hassan A. Al-Shamahy ◽  
Azhar Azher Mohammed Al-Ankoshy

 Background and aims: Natural products, in particular plant extracts, have opened up great chance in the area of drug progress owing to their chemical variety. The Aloe genus has long been known to be used for medicinal uses in countless parts of the world. This study was planned to inspect the phytochemicals and anti-cancer capabilities of Aloe rubroviolaceae, Aloe vera and Aloe sabaea flowers. Materials and Methods: Three types of ethanolic extracts of plants traditionally used in Yemen to treat a variety of diseases have been tested in vitro for their potential anticancer activity on different human cancer cell lines. The cytotoxic activity of the ethanolic extracts of tested plants was determined using eleven strains of human cancer cells, namely: MCF-7 (breast cancer), PC-3 (prostate cancer), HEP-2(human epithelial carcinoma), MNFS-60 (myelogenous leukemia), CACO (intestinal cancer), A-549 (lung adenocarcinoma), HeLa (cervical cancer),RD (rhabdomyosarcoma), HepG2 (hepatocellular carcinoma), HCT-116 (colon cancer),  and CHO-K1(Chinese hamster ovary). A colorimetric sulforhodamine B assay was applied to assess the in vitro cytotoxic activity of various extracts. Growth inhibition of 50% (IC50) for each extract was calculated from the optical density of treated and untreated cells. Doxorubicin, a broad-spectrum anticancer drug was used as a positive control. Results: More interesting cytotoxic activity was observed for Aloe vera extract more than Aloe sabaea and Aloe rubroviolaceae, extract.  Conclusions: This study presents an initial screening for anti-proliferative activity of a variety of Aloe species flowers extracts on diverse cancer cell lines. Different extracts of Aloe species significantly inhibit the growth of various cancer cell lines  in a concentration-dependent manner. Advance researches are necessary to understand the possible mechanism(s) of action of these extract on a variety of cancer cells and separation of active phyto-chemicals.                   Peer Review History: Received: 18 July 2021; Revised: 17 August; Accepted: 8 September, Available online: 15 September 2021 Academic Editor:  Dr. Muhammad Zahid Iqbal, AIMST University, Malaysia, [email protected] UJPR follows the most transparent and toughest ‘Advanced OPEN peer review’ system. The identity of the authors and, reviewers will be known to each other. This transparent process will help to eradicate any possible malicious/purposeful interference by any person (publishing staff, reviewer, editor, author, etc) during peer review. As a result of this unique system, all reviewers will get their due recognition and respect, once their names are published in the papers. We expect that, by publishing peer review reports with published papers, will be helpful to many authors for drafting their article according to the specifications. Auhors will remove any error of their article and they will improve their article(s) according to the previous reports displayed with published article(s). The main purpose of it is ‘to improve the quality of a candidate manuscript’. Our reviewers check the ‘strength and weakness of a manuscript honestly’. There will increase in the perfection, and transparency.  Received file:                Reviewer's Comments: Average Peer review marks at initial stage: 6.5/10 Average Peer review marks at publication stage: 7.5/10 Reviewers: Dr. U. S. Mahadeva Rao, Universiti Sultan Zainal Abidin, Terengganu Malaysia, [email protected] Dr. Nazim Hussain, BFIT, Dehradun, Uttarakhand, India, [email protected] Similar Articles: ANTIFUNGAL, CYTOTOXIC AND PHYTOTOXICITY OF AERIAL PART OF RANUNCULUS MURICATUS IN VITRO INHIBITORY ACTIVITY OF BERBERIS VULGARIS L. AGAINST LEISHMANIA TROPICA PROMASTIGOTES


Cancers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 474 ◽  
Author(s):  
Muhammad Altaf ◽  
Naike Casagrande ◽  
Elena Mariotto ◽  
Nadeem Baig ◽  
Abdel-Nasser Kawde ◽  
...  

We synthesized eight new bipyridine and bipyrimidine gold (III) dithiocarbamate-containing complexes (C1–C8) and tested them in a panel of human cancer cell lines. We used osteosarcoma (MG-63), lung (A549), prostate (PC3 and DU145), breast (MCF-7), ovarian (A2780 and A2780cis, cisplatin- and doxorubicin-resistant), and cervical (ME-180 and R-ME-180, cisplatin resistant) cancer cell lines. We found that C2, C3, C6, and C7 were more cytotoxic than cisplatin in all cell lines tested and overcame cisplatin and doxorubicin resistance in A2780cis and R-ME-180 cells. In the PC3 prostate cancer cell line, the gold (III) complex C6 ([Au2(BPM)(DMDTC)2]Cl4) induced apoptosis and double-stranded DNA breaks, modified cell cycle phases, increased Reactive Oxigen Species (ROS) generation, and reduced thioredoxin reductase and proteasome activities. It inhibited PC3 cell migration and was more cytotoxic against PC3 cells than normal human adipose-derived stromal cells. In mice bearing PC3 tumor xenografts, C6 reduced tumor growth by more than 70% without causing weight loss. Altogether, our results demonstrate the anticancer activity of these new gold (III) complexes and support the potential of C6 as a new agent for prostate cancer treatment.


2016 ◽  
Vol 94 (5) ◽  
pp. 526-533 ◽  
Author(s):  
Yan Zhao ◽  
Xinyu Wang ◽  
Lei Li ◽  
Changzhong Li

The clinical management of cervical cancer remains a challenge and the development of new treatment strategies merits attention. However, the discovery and development of novel compounds can be a long and labourious process. Drug repositioning may circumvent this process and facilitate the rapid translation of hypothesis-driven science into the clinics. In this work, we show that a FDA-approved antibiotic, doxycycline, effectively targets human papillomavirus (HPV) positive and negative cervical cancer cells in vitro and in vivo. Doxycycline significantly inhibits proliferation of a panel of cervical cancer cell lines. It also induces apoptosis of cervical cancer cells in a time- and dose-dependent manner. In addition, the apoptosis induced by doxycycline is through caspase-dependent pathway. Mechanism studies demonstrate that doxycycline affects oxygen consumption rate, glycolysis, and reduces ATP levels in cervical cancer cells. In HeLa xenograft mouse model, doxycycline significantly inhibits growth of tumour. Our in vitro and in vivo data clearly demonstrate the inhibitory effects of doxycycline on the growth and survival of cervical cancer cells. Our work provides the evidence that doxycycline can be repurposed for the treatment of cervical cancer and targeting energy metabolism may represent a potential therapeutic strategy for cervical cancer.


1993 ◽  
Vol 104 (2) ◽  
pp. 289-296 ◽  
Author(s):  
N. Hiraiwa ◽  
H. Kida ◽  
T. Sakakura ◽  
M. Kusakabe

Human cancer cell lines A431 and MCF7, which do not produce tenascin (TN) in vitro, were found to produce TN when injected into nude mice or co-cultured with the embryonic mesenchyme. The TN expression in the developing A431 solid tumor was demonstrated by immunohistochemistry and by in situ hybridization. Human TN was detected in culture media by western blot analysis using human specific monoclonal antibody (RCB-1). During tumorigenesis, in the early stage, mouse TN was actively induced and deposited in the peri- and intertumor spaces surrounding the developing tumor. Two days later, TN derived from human epithelial cancer cells was induced and mainly deposited in the intertumor basement membrane. After this stage, tumor cells were actively producing TN. On the other hand, TN induction in non TN-producing cells, such as A431 and MCF7 cell lines, was also observed in vitro. Although cell lines such as NIH-3T3, phi 2, STO, 2H6, 3E5 and CMT315, had no effect on the TN induction, primary cultured embryonic mesenchyme effectively stimulated the TN expression in the cancer cell lines. This mesenchymal effect decreased with age and was entirely lost postnatally. Furthermore, conditioned media from these embryonic mesenchymes could reproduce the same effects on TN induction as observed in the co-culture study. In conclusion, these findings suggest that TN induction in epithelial cancer cells may depend on interactions with the surrounding environment, that these interactions may be mediated by a soluble factor(s) derived from the surrounding mesenchyme and that the TN induction observed in the tumorigenesis may reflect histogenesis during the embryonic period.


Sign in / Sign up

Export Citation Format

Share Document