scholarly journals Mitochondrial TRAK adaptors coordinate dynein and kinesin motility

2021 ◽  
Author(s):  
John T. Canty ◽  
Andrew Hensley ◽  
Ahmet Yildiz

In neurons, mitochondria are transported to distal regions for supplying energy and buffer calcium. Mitochondrial transport is mediated by Miro and TRAK adaptors that recruit kinesin and dynein-dynactin. To understand how mitochondria are transported by these opposing motors and stalled at regions with elevated calcium levels, we reconstituted the mitochondrial transport machinery in vitro. We show that the coiled-coil domain of TRAK activates dynein-dynactin motility, but kinesin requires an additional factor to efficiently transport Miro/TRAK. Unexpectedly, TRAK adaptors that recruit both motors move towards the plus-end, whereas kinesin is excluded from binding TRAK transported by dynein-dynactin. The assembly and motility of the transport machinery are not affected by calcium. Instead, the mitochondrial docking protein syntaphilin is sufficient to oppose the forces generated by kinesin and stall the motility. Our results provide mechanistic insight into how mitochondria are transported by the coordinated action of motors and statically anchored to regions with high neuronal activity.

1998 ◽  
Vol 9 (6) ◽  
pp. 1235-1252 ◽  
Author(s):  
Owais Saifee ◽  
Liping Wei ◽  
Michael L. Nonet

We describe the molecular cloning and characterization of theunc-64 locus of Caenorhabditis elegans. unc-64 expresses three transcripts, each encoding a molecule with 63–64% identity to human syntaxin 1A, a membrane- anchored protein involved in synaptic vesicle fusion. Interestingly, the alternative forms of syntaxin differ only in their C-terminal hydrophobic membrane anchors. The forms are differentially expressed in neuronal and secretory tissues; genetic evidence suggests that these forms are not functionally equivalent. A complete loss-of-function mutation in unc-64 results in a worm that completes embryogenesis, but arrests development shortly thereafter as a paralyzed L1 larva, presumably as a consequence of neuronal dysfunction. The severity of the neuronal phenotypes of C. elegans syntaxin mutants appears comparable to those ofDrosophila syntaxin mutants. However, nematode syntaxin appears not to be required for embryonic development, for secretion of cuticle from the hypodermis, or for the function of muscle, in contrast to Drosophila syntaxin, which appears to be required in all cells. Less severe viable unc-64 mutants exhibit a variety of behavioral defects and show strong resistance to the acetylcholinesterase inhibitor aldicarb. Extracellular physiological recordings from pharyngeal muscle of hypomorphic mutants show alterations in the kinetics of transmitter release. The lesions in the hypomorphic alleles map to the hydrophobic face of the H3 coiled-coil domain of syntaxin, a domain that in vitro mediates physical interactions with similar coiled-coil domains in SNAP-25 and synaptobrevin. Furthermore, the unc-64 syntaxin mutants exhibit allele-specific genetic interactions with mutants carrying lesions in the coiled-coil domain of synaptobrevin, providing in vivo evidence for the significance of these domains in regulating synaptic vesicle fusion.


2002 ◽  
Vol 159 (6) ◽  
pp. 993-1004 ◽  
Author(s):  
Christine L. Humphries ◽  
Heath I. Balcer ◽  
Jessica L. D'Agostino ◽  
Barbara Winsor ◽  
David G. Drubin ◽  
...  

Mechanisms for activating the actin-related protein 2/3 (Arp2/3) complex have been the focus of many recent studies. Here, we identify a novel mode of Arp2/3 complex regulation mediated by the highly conserved actin binding protein coronin. Yeast coronin (Crn1) physically associates with the Arp2/3 complex and inhibits WA- and Abp1-activated actin nucleation in vitro. The inhibition occurs specifically in the absence of preformed actin filaments, suggesting that Crn1 may restrict Arp2/3 complex activity to the sides of filaments. The inhibitory activity of Crn1 resides in its coiled coil domain. Localization of Crn1 to actin patches in vivo and association of Crn1 with the Arp2/3 complex also require its coiled coil domain. Genetic studies provide in vivo evidence for these interactions and activities. Overexpression of CRN1 causes growth arrest and redistribution of Arp2 and Crn1p into aberrant actin loops. These defects are suppressed by deletion of the Crn1 coiled coil domain and by arc35-26, an allele of the p35 subunit of the Arp2/3 complex. Further in vivo evidence that coronin regulates the Arp2/3 complex comes from the observation that crn1 and arp2 mutants display an allele-specific synthetic interaction. This work identifies a new form of regulation of the Arp2/3 complex and an important cellular function for coronin.


2021 ◽  
Author(s):  
Scott B Biering ◽  
Francielle Tramontini Gomes de Sousa ◽  
Laurentia V. Tjang ◽  
Felix Pahmeier ◽  
Richard Ruan ◽  
...  

Severe COVID-19 is associated with epithelial and endothelial barrier dysfunction within the lung as well as in distal organs. While it is appreciated that an exaggerated inflammatory response is associated with barrier dysfunction, the triggers of this pathology are unclear. Here, we report that cell-intrinsic interactions between the Spike (S) glycoprotein of SARS-CoV-2 and epithelial/endothelial cells are sufficient to trigger barrier dysfunction in vitro and vascular leak in vivo, independently of viral replication and the ACE2 receptor. We identify an S-triggered transcriptional response associated with extracellular matrix reorganization and TGF-β signaling. Using genetic knockouts and specific inhibitors, we demonstrate that glycosaminoglycans, integrins, and the TGF-β signaling axis are required for S-mediated barrier dysfunction. Our findings suggest that S interactions with barrier cells are a contributing factor to COVID-19 disease severity and offer mechanistic insight into SARS-CoV-2 triggered vascular leak, providing a starting point for development of therapies targeting COVID-19 pathogenesis.


2021 ◽  
Author(s):  
Jonathan Todd ◽  
Chun-Yang Li ◽  
Jason Crack ◽  
Simone Newton-Payne ◽  
Andrew Murphy ◽  
...  

Abstract Marine algae and bacteria produce eight billion tonnes of the organosulfur molecule dimethylsulfoniopropionate (DMSP) in Earth’s surface oceans every year. DMSP is an anti-stress compound and, once released into the environment, a major nutrient, signalling molecule and source of climate-active gases. The methionine transamination pathway for DMSP synthesis is used by most known DMSP-producing algae and bacteria. The S-directed S-adenosylmethionine-dependent methyltransferase (SAM-MT) 4-methylthio-2-hydroxybutyrate (MTHB) S-methyltransferase, encoded by the dsyB/DSYB gene, is the key enzyme of this pathway, generating S-adenosylhomocysteine (SAH) and 4-dimethylsulfonio-2-hydroxybutyrate (DMSHB). dsyB/DSYB, present in most DMSP-producing bacteria and haptophyte and dinoflagellate algae with the highest known DMSP concentrations, is shown to be far more abundant and transcribed in marine environments than any other known DMSP synthesis pathway S-methyltransferase gene. Furthermore, we demonstrate in vitro activity of the bacterial DsyB enzyme from Nisaea denitrificans, and provide its crystal structure in complex with SAM and SAH-MTHB, which together provide the first mechanistic insights into a DMSP synthesis enzyme. Structural and mutational analyses imply that DsyB adopts a novel mechanism, distinct from any previously reported SAM-MT, in which the DsyB residue Tyr142 activates the sulfur atom of MTHB for nucleophilic attack on the SAM methyl group. Sequence analysis suggests that this mechanism is common to all bacterial DsyB enzymes and also, importantly, eukaryotic DSYB enzymes from e.g., algae that are the major DMSP producers in Earth’s surface oceans.


2021 ◽  
Author(s):  
YUANWEI FAN ◽  
Natasha Bilkey ◽  
Ram Dixit

Accruing evidence points to the control of microtubule minus-end dynamics as being crucial for the spatial arrangement and function of the microtubule cytoskeleton. In plants, the SPIRAL2 (SPR2) protein has emerged as a microtubule minus-end regulator that is structurally distinct from the animal minus-end regulators. Previously, SPR2 was shown to autonomously localize to microtubule minus ends and decrease their depolymerization rate. Here, we used in vitro and in planta experiments to identify the structural determinants required for SPR2 to recognize and stabilize microtubule minus ends. We show that SPR2 contains a single N-terminal TOG domain that binds to soluble tubulin. The TOG domain, a basic region, and coiled-coil domain are necessary and sufficient to target and stabilize microtubule minus ends. We demonstrate that the coiled-coil domain mediates multimerization of SPR2 that provides avidity for microtubule binding and is essential for binding to soluble tubulin. While TOG domain-containing proteins are traditionally thought to function as microtubule plus-end regulators, our results reveal that nature has repurposed the TOG domain of SPR2 to regulate microtubule minus ends.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Brianna J. Klein ◽  
Suk Min Jang ◽  
Catherine Lachance ◽  
Wenyi Mi ◽  
Jie Lyu ◽  
...  

Abstract Acetylation of histone H3K23 has emerged as an essential posttranslational modification associated with cancer and learning and memory impairment, yet our understanding of this epigenetic mark remains insufficient. Here, we identify the native MORF complex as a histone H3K23-specific acetyltransferase and elucidate its mechanism of action. The acetyltransferase function of the catalytic MORF subunit is positively regulated by the DPF domain of MORF (MORFDPF). The crystal structure of MORFDPF in complex with crotonylated H3K14 peptide provides mechanistic insight into selectivity of this epigenetic reader and its ability to recognize both histone and DNA. ChIP data reveal the role of MORFDPF in MORF-dependent H3K23 acetylation of target genes. Mass spectrometry, biochemical and genomic analyses show co-existence of the H3K23ac and H3K14ac modifications in vitro and co-occupancy of the MORF complex, H3K23ac, and H3K14ac at specific loci in vivo. Our findings suggest a model in which interaction of MORFDPF with acylated H3K14 promotes acetylation of H3K23 by the native MORF complex to activate transcription.


1999 ◽  
Vol 19 (12) ◽  
pp. 8335-8343 ◽  
Author(s):  
Haiyun Cheng ◽  
Jim A. Rogers ◽  
Nancy A. Dunham ◽  
Thomas E. Smithgall

ABSTRACT The cytoplasmic protein-tyrosine kinase Fes has been implicated in cytokine signal transduction, hematopoiesis, and embryonic development. Previous work from our laboratory has shown that active Fes exists as a large oligomeric complex in vitro. However, when Fes is expressed in mammalian cells, its kinase activity is tightly repressed. The Fes unique N-terminal sequence has two regions with strong homology to coiled-coil-forming domains often found in oligomeric proteins. Here we show that disruption or deletion of the first coiled-coil domain upregulates Fes tyrosine kinase and transforming activities in Rat-2 fibroblasts and enhances Fes differentiation-inducing activity in myeloid leukemia cells. Conversely, expression of a Fes truncation mutant consisting only of the unique N-terminal domain interfered with Rat-2 fibroblast transformation by an activated Fes mutant, suggesting that oligomerization is essential for Fes activation in vivo. Coexpression with the Fes N-terminal region did not affect the transforming activity of v-Src in Rat-2 cells, arguing against a nonspecific suppressive effect. Taken together, these findings suggest a model in which Fes activation may involve coiled-coil-mediated interconversion of monomeric and oligomeric forms of the kinase. Mutation of the first coiled-coil domain may activate Fes by disturbing intramolecular coiled-coil interaction, allowing for oligomerization via the second coiled-coil domain. Deletion of the second coiled-coil domain blocks fibroblast transformation by an activated form of c-Fes, consistent with this model. These results provide the first evidence for regulation of a nonreceptor protein-tyrosine kinase by coiled-coil domains.


2015 ◽  
Vol 26 (8) ◽  
pp. 1491-1508 ◽  
Author(s):  
Robin Beaven ◽  
Nikola S. Dzhindzhev ◽  
Yue Qu ◽  
Ines Hahn ◽  
Federico Dajas-Bailador ◽  
...  

Axons act like cables, electrically wiring the nervous system. Polar bundles of microtubules (MTs) form their backbones and drive their growth. Plus end–tracking proteins (+TIPs) regulate MT growth dynamics and directionality at their plus ends. However, current knowledge about +TIP functions, mostly derived from work in vitro and in nonneuronal cells, may not necessarily apply to the very different context of axonal MTs. For example, the CLIP family of +TIPs are known MT polymerization promoters in nonneuronal cells. However, we show here that neither Drosophila CLIP-190 nor mammalian CLIP-170 is a prominent MT plus end tracker in neurons, which we propose is due to low plus end affinity of the CAP-Gly domain–containing N-terminus and intramolecular inhibition through the C-terminus. Instead, both CLIP-190 and CLIP-170 form F-actin–dependent patches in growth cones, mediated by binding of the coiled-coil domain to myosin-VI. Because our loss-of-function analyses in vivo and in culture failed to reveal axonal roles for CLIP-190, even in double-mutant combinations with four other +TIPs, we propose that CLIP-190 and -170 are not essential axon extension regulators. Our findings demonstrate that +TIP functions known from nonneuronal cells do not necessarily apply to the regulation of the very distinct MT networks in axons.


2019 ◽  
Author(s):  
Tugsan Tezil ◽  
Manish Chamoli ◽  
Che-Ping Ng ◽  
Roman P. Simon ◽  
Victoria J. Butler ◽  
...  

AbstractAging is characterized by the progressive loss of physiological function in all organisms. Remarkably, the aging process can be modulated by environmental modifications, including diet and small molecules. The natural compound nordihydroguaiaretic acid (NDGA) robustly increases lifespan in flies and mice, but its mechanism of action remains unclear. Here, we report that NDGA is an inhibitor of the epigenetic regulator p300. We find that NDGA inhibits p300 acetyltransferase activity in vitro and suppresses acetylation of a key p300 target in histones (i.e., H3K27) in cells. We use the cellular thermal shift assay to uniquely demonstrate NDGA binding to p300 in cells. Finally, in agreement with recent findings indicating that p300 is a potent blocker of autophagy, we show that NDGA treatment induces autophagy. These findings identify p300 as a novel target of NDGA and provide mechanistic insight into its role in longevity.


2019 ◽  
Author(s):  
Tiantian Wu ◽  
Yi Lu ◽  
Orit Gutman ◽  
Huasong Lu ◽  
Qiang Zhou ◽  
...  

AbstractTAZ promotes cell proliferation, development, and tumorigenesis by regulating target gene transcription. However, how TAZ orchestrates the transcriptional responses remains poorly defined. Here we demonstrate that TAZ forms nuclear condensates via liquid-liquid phase separation to compartmentalize its DNA binding co-factor TEAD4, the transcription co-activators BRD4 and MED1 and the transcription elongation factor CDK9 for activation of gene expression. TAZ, but not its paralog YAP, forms phase-separated droplets in vitro and liquid-like nuclear condensates in vivo, and this ability is negatively regulated by Hippo signaling via LATS-mediated phosphorylation and mediated by the coiled-coil domain. Deletion of the TAZ coiled-coil domain or substitution with the YAP coiled-coil domain does not affect the interaction of TAZ with its partners, but prevents its phase separation and more importantly, its ability to induce target gene expression. Thus, our study identifies a novel mechanism for the transcriptional activation by TAZ and demonstrates for the first time that pathway-specific transcription factors also engage the phase separation mechanism for efficient transcription activation.


Sign in / Sign up

Export Citation Format

Share Document