scholarly journals Novel Driver Strength Index highlights important cancer genes in TCGA PanCanAtlas patients

Author(s):  
Aleksey V Belikov ◽  
Danila V Otnykov ◽  
Alexey D Vyatkin ◽  
Sergey V Leonov

Elucidating crucial driver genes is paramount for understanding the cancer origins and mechanisms of progression, as well as selecting targets for molecular therapy. Cancer genes are usually ranked by the frequency of mutation, which, however, does not necessarily reflect their driver strength. Here we hypothesize that driver strength is higher for genes that are preferentially mutated in patients with few driver mutations overall, because these few mutations should be strong enough to initiate cancer. We propose a formula to calculate the corresponding Driver Strength Index (DSI), as well as the Normalized Driver Strength Index (NDSI), the latter completely independent of the overall gene mutation frequency. We validate these indices using the largest database of human cancer mutations - TCGA PanCanAtlas, multiple established algorithms for cancer driver prediction (2020plus, CHASMplus, CompositeDriver, dNdScv, DriverNet, HotMAPS, IntOGen Plus, OncodriveCLUSTL, OncodriveFML) and four custom computational pipelines that integrate driver contributions from SNA, CNA and aneuploidy at the patient-level resolution. We demonstrate that NDSI provides substantially different rankings of genes as compared to DSI and frequency approach. For example, NDSI highlighted the importance of guanine nucleotide-binding protein subunits GNAQ, GNA11, GNAI1, GNAZ and GNB3, General Transcription Factor II family members GTF2I and GTF2F2, as well as fibroblast growth factor receptors FGFR2 and FGFR3. Intriguingly, NDSI prioritized CIC, FUBP1, IDH1 and IDH2 mutations, as well as 19q and 1p chromosome arm losses, that comprise characteristic molecular alterations of gliomas. KEGG analysis shows that top NDSI-ranked genes comprise PDGFRA-GRB2-SOS2-HRAS/NRAS-BRAF pathway, GNAQ/GNA11-HRAS/NRAS-BRAF pathway, GNB3-AKT1-IKBKG/GSK3B/CDKN1B pathway and TCEB1-VHL pathway. NDSI does not seem to correlate with the number of protein-protein interactions. We share our software to enable calculation of DSI and NDSI for outputs of any third-party driver prediction algorithms or their combinations.

2020 ◽  
Vol 49 (D1) ◽  
pp. D1289-D1301 ◽  
Author(s):  
Tao Wang ◽  
Shasha Ruan ◽  
Xiaolu Zhao ◽  
Xiaohui Shi ◽  
Huajing Teng ◽  
...  

Abstract The prevalence of neutral mutations in cancer cell population impedes the distinguishing of cancer-causing driver mutations from passenger mutations. To systematically prioritize the oncogenic ability of somatic mutations and cancer genes, we constructed a useful platform, OncoVar (https://oncovar.org/), which employed published bioinformatics algorithms and incorporated known driver events to identify driver mutations and driver genes. We identified 20 162 cancer driver mutations, 814 driver genes and 2360 pathogenic pathways with high-confidence by reanalyzing 10 769 exomes from 33 cancer types in The Cancer Genome Atlas (TCGA) and 1942 genomes from 18 cancer types in International Cancer Genome Consortium (ICGC). OncoVar provides four points of view, ‘Mutation’, ‘Gene’, ‘Pathway’ and ‘Cancer’, to help researchers to visualize the relationships between cancers and driver variants. Importantly, identification of actionable driver alterations provides promising druggable targets and repurposing opportunities of combinational therapies. OncoVar provides a user-friendly interface for browsing, searching and downloading somatic driver mutations, driver genes and pathogenic pathways in various cancer types. This platform will facilitate the identification of cancer drivers across individual cancer cohorts and helps to rank mutations or genes for better decision-making among clinical oncologists, cancer researchers and the broad scientific community interested in cancer precision medicine.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242780
Author(s):  
Houriiyah Tegally ◽  
Kevin H. Kensler ◽  
Zahra Mungloo-Dilmohamud ◽  
Anisah W. Ghoorah ◽  
Timothy R. Rebbeck ◽  
...  

As the genomic profile across cancers varies from person to person, patient prognosis and treatment may differ based on the mutational signature of each tumour. Thus, it is critical to understand genomic drivers of cancer and identify potential mutational commonalities across tumors originating at diverse anatomical sites. Large-scale cancer genomics initiatives, such as TCGA, ICGC and GENIE have enabled the analysis of thousands of tumour genomes. Our goal was to identify new cancer-causing mutations that may be common across tumour sites using mutational and gene expression profiles. Genomic and transcriptomic data from breast, ovarian, and prostate cancers were aggregated and analysed using differential gene expression methods to identify the effect of specific mutations on the expression of multiple genes. Mutated genes associated with the most differentially expressed genes were considered to be novel candidates for driver mutations, and were validated through literature mining, pathway analysis and clinical data investigation. Our driver selection method successfully identified 116 probable novel cancer-causing genes, with 4 discovered in patients having no alterations in any known driver genes: MXRA5, OBSCN, RYR1, and TG. The candidate genes previously not officially classified as cancer-causing showed enrichment in cancer pathways and in cancer diseases. They also matched expectations pertaining to properties of cancer genes, for instance, showing larger gene and protein lengths, and having mutation patterns suggesting oncogenic or tumor suppressor properties. Our approach allows for the identification of novel putative driver genes that are common across cancer sites using an unbiased approach without any a priori knowledge on pathways or gene interactions and is therefore an agnostic approach to the identification of putative common driver genes acting at multiple cancer sites.


2018 ◽  
Author(s):  
Paul Ashford ◽  
Camilla S.M. Pang ◽  
Aurelio A. Moya-García ◽  
Tolulope Adeyelu ◽  
Christine A. Orengo

Tumour sequencing identifies highly recurrent point mutations in cancer driver genes, but rare functional mutations are hard to distinguish from large numbers of passengers. We developed a novel computational platform applying a multi-modal approach to filter out passengers and more robustly identify putative driver genes. The primary filter identifies enrichment of cancer mutations in CATH functional families (CATH-FunFams) – structurally and functionally coherent sets of evolutionary related domains. Using structural representatives from CATH-FunFams, we subsequently seek enrichment of mutations in 3D and show that these mutation clusters have a very significant tendency to lie close to known functional sites or conserved sites predicted using CATH-FunFams. Our third filter identifies enrichment of putative driver genes in functionally coherent protein network modules confirmed by literature analysis to be cancer associated.Our approach is complementary to other domain enrichment approaches exploiting Pfam families, but benefits from more functionally coherent groupings of domains. Using a set of mutations from 22 cancers we detect 151 putative cancer drivers, of which 79 are not listed in cancer resources and include recently validated cancer genes EPHA7, DCC netrin-1 receptor and zinc-finger protein ZNF479.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Madeleine Darbyshire ◽  
Zachary du Toit ◽  
Mark F. Rogers ◽  
Tom R. Gaunt ◽  
Colin Campbell

Abstract For cancers, such as common solid tumours, variants in the genome give a selective growth advantage to certain cells. It has recently been argued that the mean count of coding single nucleotide variants acting as disease-drivers in common solid tumours is frequently small in size, but significantly variable by cancer type (hypermutation is excluded from this study). In this paper we investigate this proposal through the use of integrative machine-learning-based classifiers we have proposed recently for predicting the disease-driver status of single nucleotide variants (SNVs) in the human cancer genome. We find that predicted driver counts are compatible with this proposal, have similar variabilities by cancer type and, to a certain extent, the drivers are identifiable by these machine learning methods. We further discuss predicted driver counts stratified by stage of disease and driver counts in non-coding regions of the cancer genome, in addition to driver-genes.


2020 ◽  
Author(s):  
Ferran Muiños ◽  
Francisco Martinez-Jimenez ◽  
Oriol Pich ◽  
Abel Gonzalez-Perez ◽  
Nuria Lopez-Bigas

SummaryExtensive bioinformatics analysis of datasets of tumor somatic mutations data have revealed the presence of some 500-600 cancer driver genes. The identification of all potential driver mutations affecting cancer genes is essential to implement precision cancer medicine and to understand the interplay of mutation probability and selection in tumor development. Here, we present an in silico saturation mutagenesis approach to identify all driver mutations in 568 cancer genes across 66 tumor types. For most cancer genes the mutation probability across tissues --underpinned by active mutational processes-- influences which driver variants have been observed, although this differs significantly between tumor suppressor and oncogenes. The role of selection is apparent in some of the latter, the observed and unobserved driver mutations of which are equally likely to occur. The number of potential driver mutations in a cancer gene roughly determines how many mutations are available for detection across newly sequenced tumors.


2015 ◽  
Author(s):  
Heiko Horn ◽  
Michael S. Lawrence ◽  
Jessica Xin Hu ◽  
Elizabeth Worstell ◽  
Nina Ilic ◽  
...  

Heterogeneity across cancer makes it difficult to find driver genes with intermediate (2-20%) and low frequency (<2%) mutations, and we are potentially missing entire classes of networks (or pathways) of biological and therapeutic value. Here, we quantify the extent to which cancer genes across 21 tumor types have an increased burden of mutations in their immediate gene network derived from functional genomics data. We formalize a classifier that accurately calculates the significance level of a gene’s network mutation burden (NMB) and show it can accurately predict known cancer genes and recently proposed driver genes in the majority of tested tumours. Our approach predicts 62 putative cancer genes, including 35 with clear connection to cancer and 27 genes, which point to new cancer biology. NMB identifies proportionally more (4x) low-frequency mutated genes as putative cancer genes than gene-based tests, and provides molecular clues in patients without established driver mutations. Our quantitative and comparative analysis of pan-cancer networks across 21 tumour types gives new insights into the biological and genetic architecture of cancers and enables additional discovery from existing cancer genomes. The framework we present here should become increasingly useful with more sequencing data in the future.


2020 ◽  
Vol 21 (3) ◽  
pp. 1172 ◽  
Author(s):  
Pauline J. Beckmann ◽  
David A. Largaespada

Transposon mutagenesis has been used to model many types of human cancer in mice, leading to the discovery of novel cancer genes and insights into the mechanism of tumorigenesis. For this review, we identified over twenty types of human cancer that have been modeled in the mouse using Sleeping Beauty and piggyBac transposon insertion mutagenesis. We examine several specific biological insights that have been gained and describe opportunities for continued research. Specifically, we review studies with a focus on understanding metastasis, therapy resistance, and tumor cell of origin. Additionally, we propose further uses of transposon-based models to identify rarely mutated driver genes across many cancers, understand additional mechanisms of drug resistance and metastasis, and define personalized therapies for cancer patients with obesity as a comorbidity.


2018 ◽  
Author(s):  
Felix Dietlein ◽  
Donate Weghorn ◽  
Amaro Taylor-Weiner ◽  
André Richters ◽  
Brendan Reardon ◽  
...  

Many cancer genomes contain large numbers of somatic mutations, but few of these mutations drive tumor development. Current approaches to identify cancer driver genes are largely based on mutational recurrence, i.e. they search for genes with an increased number of nonsynonymous mutations relative to the local background mutation rate. Multiple studies have noted that the sensitivity of recurrence-based methods is limited in tumors with high background mutation rates, because passenger mutations dilute their statistical power. Here, we observe that passenger mutations tend to occur in characteristic nucleotide sequence contexts, while driver mutations follow a different distribution pattern determined by the location of functionally relevant genomic positions along the protein-coding sequence. To discover new cancer genes, we searched for genes with an excess of mutations in unusual nucleotide contexts that deviate from the characteristic context around passenger mutations. By applying this statistical framework to whole-exome sequencing data from 12,004 tumors, we discovered a long tail of novel candidate cancer genes with mutation frequencies as low as 1% and functional supporting evidence. Our results show that considering both the number and the nucleotide context around mutations helps identify novel cancer driver genes, particularly in tumors with high background mutation rates.


2016 ◽  
Author(s):  
Francesco Iorio ◽  
Luz Garcia-Alonso ◽  
Jonathan S. Brammeld ◽  
Iñigo Martincorena ◽  
David R. Wille ◽  
...  

ABSTRACTCancer hallmarks are evolutionary traits required by a tumour to develop. While extensively characterised, the way these traits are achieved through the accumulation of somatic mutations in key biological pathways is not fully understood. To shed light on this subject, we characterised the landscape of pathway alterations associated with somatic mutations observed in 4,415 patients across ten cancer types, using 374 orthogonal pathway gene-sets mapped onto canonical cancer hallmarks. Towards this end, we developed SLAPenrich: a computational method based on population-level statistics, freely available as an open source R package. Assembling the identified pathway alterations into sets of hallmark signatures allowed us to connect somatic mutations to clinically interpretable cancer mechanisms. Further, we explored the heterogeneity of these signatures, in terms of ratio of altered pathways associated with each individual hallmark, assuming that this is reflective of the extent of selective advantage provided to the cancer type under consideration. Our analysis revealed the predominance of certain hallmarks in specific cancer types, thus suggesting different evolutionary trajectories across cancer lineages.Finally, although many pathway alteration enrichments are guided by somatic mutations in frequently altered high-confidence cancer genes, excluding these driver mutations preserves the hallmark heterogeneity signatures, thus the detected hallmarks’ predominance across cancer types. As a consequence, we propose the hallmark signatures as a ground truth to characterise tails of infrequent genomic alterations and identify potential novel cancer driver genes and networks.


Sign in / Sign up

Export Citation Format

Share Document