scholarly journals Responses of Escherichia coli and Listeria monocytogenes to ozone treatment on non-host tomato: Efficacy of intervention and evidence of induced acclimation

2021 ◽  
Author(s):  
Benildo G de los Reyes ◽  
Xiaomei Shu ◽  
Manavi Singh ◽  
Naga Bhushana Rao Karampudi ◽  
David F Bridges ◽  
...  

Because of the continuous rise of foodborne illnesses caused by the consumption of raw fruits and vegetables, effective post-harvest anti-microbial strategies are needed. This study evaluated the dose × time effects on the anti-microbial action of ozone (O 3 ) gas against the Gram-negative Escherichia coli O157:H7 and Gram-positive Listeria monocytogenes, which are common contaminants in fresh produce . The study on non-host tomato environment correlated the dose × time aspects of xenobiosis by examining the correlation between bacterial survival in terms of log-reduction and defense responses at the level of gene expression. In E. coli , low (1 µg O 3 /g of fruit) and moderate (2 µg O 3 /g of fruit) doses caused insignificant reduction in survival, while high dose (3 µg/g of fruit) caused significant reduction in survival in a time-dependent manner. In L. monocytogenes , moderate dose caused significant reduction even with short-duration exposure. Distinct responses to O 3 xenobiosis between E. coli and L. monocytogenes are likely related to differences in membrane and cytoplasmic structure and components. Transcriptome profiling by RNA-Seq showed that primary defenses in E. coli were attenuated after exposure to a low dose, while the responses at moderate dose were characterized by massive upregulation of pathogenesis and stress-related genes, which implied the activation of defense responses. More genes were downregulated during the first hour at high dose, with a large number of such genes getting significantly upregulated after 2 hr and 3 hr. This trend suggests that prolonged exposure led to potential adaptation. In contrast, massive downregulation of genes was observed in L. monocytogenes regardless of dose and exposure duration, implying a mechanism of defense distinct from that of E. coli .  The nature of bacterial responses revealed by this study should guide the selection of xenobiotic agents for eliminating bacterial contamination on fresh produce without overlooking the potential risks of adaptation.

2020 ◽  
Vol 83 (4) ◽  
pp. 637-643
Author(s):  
JOSHUA B. GURTLER

ABSTRACT Contamination of fresh produce with the foodborne pathogens Salmonella enterica, Listeria monocytogenes, and Escherichia coli O157:H7 continues to be problematic, resulting in outbreaks of foodborne illness and costly corporate recalls. Various individual concentrations of citric or lactic acids (0.35 to 0.61%) or isopropyl citrate (0.16 to 0.54%) combined with two generally recognized as safe surfactants, 0.025% sodium-2-ethyl-hexyl sulfate and 0.025% sodium dodecylbenzene-sulfonate, were tested against these three pathogens in suspension and when inoculated and dried on the surface of grape tomatoes. The efficacy of sodium hypochlorite (NaClO; at 46 ppm) was also evaluated under dirty and clean conditions in suspension after addition of 0.3 or 0.03% bovine serum albumin, respectively, as an organic load. NaClO (46 ppm) inactivated the three pathogens in suspension by <0.76 log CFU/mL after 5 min in the presence of 0.3% bovine serum albumin, whereas 9 and 15 ppm of free chlorine inactivated the pathogens by 0.64 and 2.77 log CFU/mL, respectively, after 5 min under clean conditions. Isopropyl citrate (0.16% acidulant) plus 0.05% total concentration of the two surfactants inactivated the pathogens in suspension by up to 7.0 log CFU/mL within 2 min. When applied to grape tomatoes for 2 min, 0.54% isopropyl citrate plus 0.025% concentrations of each of the two surfactants reduced Salmonella, E. coli O157:H7, and L. monocytogenes by as much as ca. 5.47, 4.89, and 4.19 log CFU/g, respectively. These reductions were significantly greater than those achieved with 49 ppm of free chlorine. Citric acid and lactic acid plus surfactant washes achieved greater inactivation than water-only washes, reducing Salmonella, E. coli O157:H7, and L. monocytogenes on tomatoes by up to 4.90, 4.37, and 3.98 log CFU/g, respectively. These results suggest that these combinations of acidulants and surfactants may be an effective tool for preventing cross-contamination during the washing of grape tomatoes, for reducing pathogens on the fruit itself, and as an alternative to chlorine for washing fresh produce. HIGHLIGHTS


2017 ◽  
Vol 80 (7) ◽  
pp. 1066-1071 ◽  
Author(s):  
Mustafa Yesil ◽  
David R. Kasler ◽  
En Huang ◽  
Ahmed E. Yousef

ABSTRACT Foodborne disease outbreaks associated with the consumption of fresh produce pose a threat to public health, decrease consumer confidence in minimally processed foods, and negatively impact the sales of these commodities. The aim of the study was to determine the influence of population size of inoculated pathogen on its inactivation by gaseous ozone treatment during vacuum cooling. Spinach leaves were spot inoculated with Escherichia coli O157:H7 at approximate initial populations of 108, 107, and 105 CFU/g. Inoculated leaves were vacuum cooled (28.5 inHg; 4°C) in a custom-made vessel and then were subjected to a gaseous ozone treatment under the following conditions: 1.5 g of ozone per kg of gas mixture, vessel pressure at 10 lb/in2 gauge, 94 to 98% relative humidity, and 30 min of holding time at 9°C. Treatment of the leaves, having the aforementioned inocula, decreased E. coli populations by 0.2, 2.1, and 2.8 log CFU/g, respectively, compared with the inoculated untreated controls. Additionally, spinach leaves were inoculated at 1.4 × 103 CFU/g, which approximates natural contamination level, and the small populations remaining after ozone treatment were quantified using the most-probable-number (MPN) method. Vacuum and ozone sequential treatment decreased this E. coli O157:H7 population to <3 MPN/g (i.e., greater than 3-log reduction). Resulting log reductions were greater (P < 0.05) at the lower rather than the higher inoculum levels. In conclusion, treatment of spinach leaves with gaseous ozone is effective against pathogen loads comparable to those found in naturally contaminated fresh produce, but efficacy decreases as inoculum level increases.


2003 ◽  
Vol 66 (3) ◽  
pp. 382-389 ◽  
Author(s):  
JOHN S. NOVAK ◽  
JAMES T. C. YUAN

The threat of pathogen survival following ozone treatment of meat necessitates careful evaluation of the microorganisms surviving under such circumstances. The objective of this study was to determine whether sublethal aqueous ozone treatment (3 ppm of O3 for 5 min) of microorganisms on beef surfaces would result in increased or decreased survival with respect to subsequent heat, alkali, or NaCl stress. A mild heat treatment (55°C for 30 min) was used for comparison. Reductions in three-strain cocktails of Clostridium perfringens, Escherichia coli O157:H7, and Listeria monocytogenes on beef following the heat treatment were 0.14, 0.77, and 1.47 log10 CFU/g, respectively, whereas reductions following ozone treatment were 1.28, 0.85, and 1.09 log10 CFU/g, respectively. C. perfringens cells exhibited elevated heat resistance at 60°C (D60 [time at 60°C required to reduce the viable cell population by 1 log10 units or 90%] = 17.76 min) following heat treatment of beef (55°C for 30 min) but exhibited reduced viability at 60°C following ozone treatment (D60 = 7.64 min) compared with the viability of untreated control cells (D60 = 13.84 min). The D60-values for L. monocytogenes and E. coli O157:H7 following heat and ozone exposures were not significantly different (P > 0.05). C. perfringens cells that survived ozone treatment did not exhibit increased resistance to pH (pH 6 to 12) relative to non-ozone-treated cells when grown at 37°C for 24 h. The heat treatment also resulted in decreased numbers of surviving cells above and below neutral pH values for both E. coli O157:H7 and L. monocytogenes relative to those of non-heat-treated cells grown at 37°C for 24 h. There were significant differences (P < 0.05) in C. perfringens reductions with increasing NaCl concentrations. The effects of NaCl were less apparent for E. coli and L. monocytogenes survivors. It is concluded that pathogens surviving ozone treatment of beef are less likely to endanger food safety than are those surviving sublethal heat treatments.


2002 ◽  
Vol 65 (11) ◽  
pp. 1706-1711 ◽  
Author(s):  
M. L. BARI ◽  
Y. INATSU ◽  
S. KAWASAKI ◽  
E. NAZUKA ◽  
K. ISSHIKI

This study was conducted to evaluate the efficacy of calcinated calcium, 200 ppm chlorine water (1% active chlorine), and sterile distilled water in killing Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes on the surfaces of spot-inoculated tomatoes. Inoculated tomatoes were sprayed with calcinated calcium, chlorinated water, or sterile distilled water (control) and hand rubbed for 30 s. Populations of E. coli O157:H7, Salmonella, and L. monocytogenes in the rinse water and in the residual (0.1% peptone) wash solution were determined. Treatment with 200 ppm chlorine and calcinated calcium resulted in 3.40- and 7.85-log10 reductions of E. coli O157:H7, respectively, and 2.07- and 7.36-log10 reductions of Salmonella, respectively. Treatment with 200 ppm chlorine and calcinated calcium reduced L. monocytogenes numbers by 2.27 and 7.59 log10 CFU per tomato, respectively. The findings of this study suggest that calcinated calcium could be useful in controlling pathogenic microorganisms in fresh produce.


2018 ◽  
Vol 19 (0) ◽  
Author(s):  
Priscila Alves Dias ◽  
Daiani Teixeira Silva ◽  
Cláudio Dias Timm

Resumo Kefir é o produto da fermentação do leite pelos grãos de kefir. Esses grãos contêm uma mistura simbiótica de bactérias e leveduras imersas em uma matriz composta de polissacarídeos e proteínas. Muitos benefícios à saúde humana têm sido atribuídos ao kefir, incluindo atividade antimicrobiana contra bactérias Gram positivas e Gram negativas. A atividade antimicrobiana de 60 microrganismos isolados de grãos de kefir, frente à Escherichia coli O157:H7, Salmonella enterica subsp. enterica sorotipos Typhimurium e Enteritidis, Staphylococcus aureus e Listeria monocytogenes, foi estudada através do teste do antagonismo. A ação antimicrobiana dos sobrenadantes das bactérias ácido-lácticas que apresentaram atividade no teste do antagonismo foi testada. O experimento foi repetido usando sobrenadantes com pH neutralizado. Salmonella Typhimurium e Enteritidis sobreviveram por 24 horas no kefir em fermentação. E. coli O157:H7, S. aureus e L. monocytogenes foram recuperados até 72 horas após o início da fermentação. Todos os isolados apresentaram atividade antimicrobiana contra pelo menos um dos patógenos usados no teste do antagonismo. Sobrenadantes de 25 isolados apresentaram atividade inibitória e três mantiveram essa atividade com pH neutralizado. As bactérias patogênicas estudadas sobreviveram por tempo superior àquele normalmente utilizado para a fermentação do kefir artesanal, o que caracteriza perigo em potencial para o consumidor quando a matéria-prima não apresentar segurança sanitária. Lactobacillus isolados de grãos de kefir apresentam atividade antimicrobiana contra cepas de E. coli O157:H7, Salmonella sorotipos Typhimurium e Enteritidis, S. aureus e L. monocytogenes além daquela exercida pela diminuição do pH.


2016 ◽  
Vol 79 (7) ◽  
pp. 1143-1153 ◽  
Author(s):  
JOHN C. FRELKA ◽  
GORDON R. DAVIDSON ◽  
LINDA J. HARRIS

ABSTRACT After harvest, inshell walnuts are dried using low-temperature forced air and are then stored in bins or silos for up to 1 year. To better understand the survival of bacteria on inshell walnuts, aerobic plate counts (APCs) and Escherichia coli–coliform counts (ECCs) were evaluated during commercial storage (10 to 12°C and 63 to 65% relative humidity) over 9 months. APCs decreased by 1.4 to 2.0 log CFU per nut during the first 5 months of storage, and ECCs decreased by 1.3 to 2.2 log CFU per nut in the first month of storage. Through the remaining 4 to 8 months of storage, APCs and ECCs remained unchanged (P > 0.05) or decreased by <0.15 log CFU per nut per month. Similar trends were observed on kernels extracted from the inshell walnuts. APCs and ECCs were consistently and often significantly higher on kernels extracted from visibly broken inshell walnuts than on kernels extracted from visibly intact inshell walnuts. Parameters measured in this study were used to determine the survival of five-strain cocktails of E. coli O157:H7, Listeria monocytogenes, and Salmonella inoculated onto freshly hulled inshell walnuts (~8 log CFU/g) after simulated commercial drying (10 to 12 h; 40°C) and simulated commercial storage (12 months at 10°C and 65% relative humidity). Populations declined by 2.86, 5.01, and 4.40 log CFU per nut for E. coli O157:H7, L. monocytogenes, and Salmonella, respectively, after drying and during the first 8 days of storage. Salmonella populations changed at a rate of −0.33 log CFU per nut per month between days 8 and 360, to final levels of 2.83 ± 0.79 log CFU per nut. E. coli and L. monocytogenes populations changed by −0.17 log CFU per nut per month and −0.26 log CFU per nut per month between days 8 and 360, respectively. For some samples, E. coli or L. monocytogenes populations were below the limit of detection by plating (0.60 log CFU per nut) by day 183 or 148, respectively; at least one of the six samples was positive at each subsequent sampling time by either plating or by enrichment.


2005 ◽  
Vol 68 (12) ◽  
pp. 2559-2566 ◽  
Author(s):  
SYLVIA GAYSINSKY ◽  
P. MICHAEL DAVIDSON ◽  
BARRY D. BRUCE ◽  
JOCHEN WEISS

Growth inhibition of four strains of Escherichia coli O157:H7 (H1730, F4546, 932, and E0019) and Listeria monocytogenes (Scott A, 101, 108, and 310) by essential oil components (carvacrol and eugenol) solubilized in nonionic surfactant micelles (Surfynol 465 and 485W) was investigated. Concentrations of encapsulated essential oil components ranged from 0.02 to 1.25% depending on compound, surfactant type, and surfactant concentration (0.5 to 5%). Eugenol encapsulated in Surfynol 485W micelles was most efficient in inhibiting growth of the pathogens; 1% Surfynol 485W and 0.15% eugenol was sufficient to inhibit growth of all strains of E. coli O157:H7 and three of four strains of L. monocytogenes (Scott A, 310, and 108). The fourth strain, L. monocytogenes 101, was inhibited by 2.5% Surfynol and 0.225% eugenol. One percent Surfynol 485W in combination with 0.025% carvacrol was effective in inhibiting three of four strains of E. coli O157:H7. Strain H1730 was the most resistant strain, requiring 0.3% carvacrol and 5% surfactant for complete inhibition. Growth inhibition of L. monocytogenes by combinations of carvacrol and Surfynol 465 ranged between 0.15 and 0.35% and 1 and 3.75%, respectively. Generally, the antimicrobial activity of Surfynol 465 in combination with eugenol was higher than that for the combination with carvacrol. The potent activity was attributed to increased solubility of essential oil components in the aqueous phase due to the presence of surfactants and improved interactions of antimicrobials with microorganisms.


2002 ◽  
Vol 65 (8) ◽  
pp. 1215-1220 ◽  
Author(s):  
CHIA-MIN LIN ◽  
SARAH S. MOON ◽  
MICHAEL P. DOYLE ◽  
KAY H. McWATTERS

Iceberg lettuce is a major component in vegetable salad and has been associated with many outbreaks of foodborne illnesses. In this study, several combinations of lactic acid and hydrogen peroxide were tested to obtain effective antibacterial activity without adverse effects on sensory characteristics. A five-strain mixture of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes was inoculated separately onto fresh-cut lettuce leaves, which were later treated with 1.5% lactic acid plus 1.5% hydrogen peroxide (H2O2) at 40°C for 15 min, 1.5% lactic acid plus 2% H2O2 at 22°C for 5 min, and 2% H2O2 at 50°C for 60 or 90 s. Control lettuce leaves were treated with deionized water under the same conditions. A 4-log reduction was obtained for lettuce treated with the combinations of lactic acid and H2O2 for E. coli O157:H7 and Salmonella Enteritidis, and a 3-log reduction was obtained for L. monocytogenes. However, the sensory characteristics of lettuce were compromised by these treatments. The treatment of lettuce leaves with 2% H2O2 at 50°C was effective not only in reducing pathogenic bacteria but also in maintaining good sensory quality for up to 15 days. A ≤4-log reduction of E. coli O157:H7 and Salmonella Enteritidis was achieved with the 2% H2O2 treatment, whereas a 3-log reduction of L. monocytogenes was obtained. There was no significant difference (P > 0.05) between pathogen population reductions obtained with 2% H2O2 with 60- and 90-s exposure times. Hydrogen peroxide residue was undetectable (the minimum level of sensitivity was 2 ppm) on lettuce surfaces after the treated lettuce was rinsed with cold water and centrifuged with a salad spinner. Hence, the treatment of lettuce with 2% H2O2 at 50°C for 60 s is effective in initially reducing substantial populations of foodborne pathogens and maintaining high product quality.


2020 ◽  
Vol 118 (2) ◽  
pp. e2016017118
Author(s):  
Tamar Szoke ◽  
Nitsan Albocher ◽  
Sutharsan Govindarajan ◽  
Anat Nussbaum-Shochat ◽  
Orna Amster-Choder

The poles of Escherichia coli cells are emerging as hubs for major sensory systems, but the polar determinants that allocate their components to the pole are largely unknown. Here, we describe the discovery of a previously unannotated protein, TmaR, which localizes to the E. coli cell pole when phosphorylated on a tyrosine residue. TmaR is shown here to control the subcellular localization and activity of the general PTS protein Enzyme I (EI) by binding and polar sequestration of EI, thus regulating sugar uptake and metabolism. Depletion or overexpression of TmaR results in EI release from the pole or enhanced recruitment to the pole, which leads to increasing or decreasing the rate of sugar consumption, respectively. Notably, phosphorylation of TmaR is required to release EI and enable its activity. Like TmaR, the ability of EI to be recruited to the pole depends on phosphorylation of one of its tyrosines. In addition to hyperactivity in sugar consumption, the absence of TmaR also leads to detrimental effects on the ability of cells to survive in mild acidic conditions. Our results suggest that this survival defect, which is sugar- and EI-dependent, reflects the difficulty of cells lacking TmaR to enter stationary phase. Our study identifies TmaR as the first, to our knowledge, E. coli protein reported to localize in a tyrosine-dependent manner and to control the activity of other proteins by their polar sequestration and release.


2020 ◽  
Vol 83 (11) ◽  
pp. 1929-1933
Author(s):  
ROBERTO CONDOLEO ◽  
GILBERTO GIANGOLINI ◽  
ALEXANDRA CHIAVERINI ◽  
DANIELA PATRIARCA ◽  
PAOLA SCARAMOZZINO ◽  
...  

ABSTRACT For milk hygiene and safety, the milking phase is a critical moment because it is a probable pathway for the introduction of unwanted microorganisms in the dairy chain. In particular, Listeria monocytogenes and Escherichia coli are known as possible microbial contaminants of raw sheep's milk, although extensive knowledge regarding their contamination dynamics on sheep farms is still lacking. This study aimed to examine the occurrence and concentration of these microorganisms in milk samples collected from farm bulk tanks in the region of Lazio (Central Italy) and to investigate the related risk factors. Over a period of 1 year, we collected 372 milk samples from 87 sheep farms and administered a questionnaire to acquire information regarding relevant farm management variables. L. monocytogenes was not found in any of the samples, which indicates a low occurrence of this pathogen in sheep's bulk tank milk. In contrast, E. coli was found in almost two-thirds of milk samples (61%) but at levels below 102 CFU/mL in most of them (approximately 75%). Statistical analysis indicated that, during the warmest seasons, E. coli presence is more probable and counts are significantly higher. Unexpectedly, milk collected by hand milking had a lower level of contamination. Although further studies are necessary to clarify some aspects, the reported data add to the knowledge about the occurrence of L. monocytogenes and E. coli in raw sheep's milk and will be useful for future risk assessments. HIGHLIGHTS


Sign in / Sign up

Export Citation Format

Share Document