scholarly journals Trichoderma asperellum: First report in Bangladesh

2021 ◽  
Author(s):  
Sheikh Afsar Uddin ◽  
Ismail - Hossain ◽  
Hyat - Mahmud ◽  
Mohammad Shahjahan Monjil ◽  
Mohammad Delwar Hossain

The experiment was conducted at four laboratory, Bangladesh Agricultural University, Mymensingh to identify T. asperellum and its characterization was obtained from the rhizosphere of 49 different crops in 109 different locations of 36 districts in Bangladesh. Fifteen isolates of 88 isolates in T. asperellum were characterized on morphological and physiological features. All of the isolates were produced at 35 °C, but only TR27 and TR45 were grown and sporulate at 40 °C. Mycelial growth of all the isolates was reduced with the increasing of pH value. Molecular characterization in four isolates of TR27, TR45, TR70 and TR85 were studied at ITS and TEF region nucleotide sequencing among 15 isolates of T. asperellum and the morphological characterization at ITS and tef1 nucleotide sequencing was assimilated with molecular characterization. The isolates of TR45, TR70 and TR85 were found with 98% homology and TR27 exhibited 88% against their respective closest isolate. The isolates of TR27 and TR85 marked their respective nearest homology at 96%, while TR45 showed 99%, and 93% homology was signified with TR70 in TEF sequences. Three isolates (TR45, TR70 and TR85) were identified as T. asperellum of 100% bootstrap value and TR27 isolate was also recognized with 72% bootstrap value in phylogenetic tree. In phylogenetic analysis, tef1 extended better differentiation among the Trichoderma isolates within and among the groups of closely related species than the rDNA of the ITS region in reflecting wider variability in the isolates while a higher transversion ratio and evolutionary divergence were defined.

2018 ◽  
Vol 44 (2) ◽  
pp. 137-142 ◽  
Author(s):  
Micaele Aparecida Franco da Silva ◽  
Karina Elaine de Moura ◽  
Kamila Ellen de Moura ◽  
Denise Salomão ◽  
Flávia Rodrigues Alves Patricio

ABSTRACT Lettuce drop, caused by Sclerotinia minor and S. sclerotiorum, is one of the most important diseases that affect lettuce crop in Brazil. In previous studies, isolates of Trichoderma asperellum (IBLF 897, IBLF 904 and IBLF 914) and T. asperelloides (IBLF 908) were selected for the biocontrol of this disease. In this subsequent study, the compatibility of these isolates with pesticides used in lettuce crop in Brazil was evaluated. Initially, the mycelial growth of isolates was evaluated in culture medium plus pesticides. Then, the effect of pesticides on the parasitism of T. asperelloides isolate IBLF 914 in baits and sclerotia of S. minor and S. sclerotiorum, as well as on the survival of lettuce seedlings, was evaluated in gerboxes after application on baits and sclerotia of the antagonist with pesticides at their respective commercial doses. The fungicides pencycuron and mandipropamid and the insecticide imidacloprid did not affect the mycelial growth of Trichoderma isolates. The fungicide iprodione did not affect the mycelial growth of T. asperellum isolates. but the isolate of T. asperelloides was sensitive from the concentration of 10 µg.L-1 fungicide. Procymidone reduced the mycelial growth of Trichoderma isolates from the concentration of 10 µg.L-1 fungicide, and azoxystrobin reduced the conidial germination of the isolates of the antagonist, showing LD50 between 0.36 and 0.42 µg.L-1 fungicide. On the other hand, in the experiment carried out in “gerboxes”, none of the pesticides reduced the parasitism of baits and sclerotia or reduced the control of S. minor and S. sclerotiorum in lettuce seedlings. Results indicate that the biological control of lettuce drop with T. asperelum isolate IBLF 914 can be compatible with the remaining phytosanitary treatments used in lettuce crop.


2014 ◽  
Vol 49 (6) ◽  
pp. 440-448 ◽  
Author(s):  
Marília Lazarotto ◽  
Marciéli Pitorini Bovolini ◽  
Marlove Fátima Brião Muniz ◽  
Ricardo Harakawa ◽  
Lia Rejane Silveira Reiniger ◽  
...  

The objective of this work was to characterize and cluster isolates of Pestalotiopsis species and to identify those that are pathogenic to pecan, based on morphological and molecular characters. Pestalotiopsis spp. isolates were identified by sequencing the internal transcribed spacer (ITS) and β?tubulin regions. Identification methods were compared to indicate the key morphological characters for species characterization. Thirteen isolates were used for the pathogenicity tests. Morphological characterization was performed using the following variables: mycelial growth rate, sporulation, colony pigmentation, and conidial length and width. Ten pathogenic isolates were identified, three as -tubulin regions. Identification methods were compared to indicate the key morphological characters for species characterization. Thirteen isolates were used for the pathogenicity tests. Morphological characterization was performed using the following variables: mycelial growth rate, sporulation, colony pigmentation, and conidial length and width. Ten pathogenic isolates were identified, three as Pestalotiopsis clavispora and three as P. cocculi. The other isolates remained as an undefined species. The morphological characters were efficient for an initial separation of the isolates, which were grouped according to differences at species level, mainly colony diameter, which was identified as an important morphological describer. Beta-tubulin gene sequencing was less informative than the ITS region sequencing for species identification.


2020 ◽  
Vol 20 (4) ◽  
pp. 448-454
Author(s):  
Rahmita Burhamzah ◽  
Gemini Alam ◽  
Herlina Rante

Background: Endophytic fungi live in plants’ tissue and can produce the same bioactive compounds as its host plant produces. Syzygiumpolyanthum leaves have known to be one of the antibacterial compound producers. Aim and Objective: This study aimed to characterize morphologically, microscopically, and molecularly the antibacterial-producing endophytic fungi of Syzygiumpolyanthum leaves. Methods: The isolation of endophytic fungi was done by fragment planting method on PDA medium. The antibacterial screening was performed using the antagonistic test as the first screening followed by the disc diffusion test method. The morphological characterization was based on isolate’s mycelia color, growth pattern, margin, and surface texture of the colony, while the microscopic characterization was based on its hyphae characteristics. The molecular characterization of the isolate was done by nitrogen base sequence analysis method on nucleotide constituent of ITS rDNA genes of the isolate. Results: The results found that isolate DF1 has antibacterial activity against E.coli, S.aureus, P.acne, and P.aeruginosa, with the greatest inhibition at 10% concentration of broth fermentation extract on S.aureus with a diameter of inhibition of 13.77 mm. Conclusion: Based on macroscopic, microscopic, and molecular characterization, DF1 isolate is similar to Ceriporialacerate.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 303
Author(s):  
Rokayya Sami ◽  
Schahrazad Soltane ◽  
Mahmoud Helal

In the current work, the characterization of novel chitosan/silica nanoparticle/nisin films with the addition of nisin as an antimicrobial technique for blueberry preservation during storage is investigated. Chitosan/Silica Nanoparticle/N (CH-SN-N) films presented a stable suspension as the surface loads (45.9 mV) and the distribution was considered broad (0.62). The result shows that the pH value was increased gradually with the addition of nisin to 4.12, while the turbidity was the highest at 0.39. The content of the insoluble matter and contact angle were the highest for the Chitosan/Silica Nanoparticle (CH-SN) film at 5.68%. The use of nano-materials in chitosan films decreased the material ductility, reduced the tensile strength and elongation-at-break of the membrane. The coated blueberries with Chitosan/Silica Nanoparticle/N films reported the lowest microbial contamination counts at 2.82 log CFU/g followed by Chitosan/Silica Nanoparticle at 3.73 and 3.58 log CFU/g for the aerobic bacteria, molds, and yeasts population, respectively. It was observed that (CH) film extracted 94 regions with an average size of 449.10, at the same time (CH-SN) film extracted 169 regions with an average size of 130.53. The (CH-SN-N) film presented the best result at 5.19%. It could be observed that the size of the total region of the fruit for the (CH) case was the smallest (1663 pixels), which implied that the fruit lost moisture content. As a conclusion, (CH-SN-N) film is recommended for blueberry preservation to prolong the shelf-life during storage.


2020 ◽  
Vol 79 (04) ◽  
Author(s):  
Amarjeet Kumar ◽  
N. K. Singh ◽  
Sneha Adhikari ◽  
Anjali Joshi

Germplasm enhancement seems to be an essential part of a breeding programme to improve resiliency, adaptability and productivity of the crops. To develop and diversify the maize germplasm, teosinte a wild relative of maize was integrated in crossing programme and BC1F4 lines were developed. Five BC1F4 lines along with teosinte and maize inbred DI-103 were characterised using quantitative characters and molecular markers. Morphological characterization was done with the help of visual parameters and quantitative traits and for molecular characterization fifty six SSR markers were used. SSR data were analysed with the help of software Mapmaker and twelve linkage groups were generated. Maximum allelic contributions from parent teosinte were found in the introgressed line AM-5 (53.4%) followed by AM-12 (48.9 %), whereas, least contribution of 34.1 % was found in AM-7. The maximum genetic distance among the introgressed lines was observed between AM-2 and AM-9 (0.75) followed by AM-2 and AM-7 (0.70), AM-7 and AM-9 (0.70). The maximum number of cob was found in AM-5 (5.00) followed by AM-2 (4.00). Grain yield per plant was found highest for AM-2 (100.00 g) followed by AM-12 (80.00 g), while, least value was observed for AM-7 (42.00 g). The results indicated differential parental contributions which leads to diversification in the progenies derived from diverse crosses in maize and further opined that such crosses seems to be essential for creating adapted germplasm to whom breeders are looking for.


2014 ◽  
Vol 40 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Zayame Vegette Pinto ◽  
Matheus Aparecido Pereira Cipriano ◽  
Amaury da Silva dos Santos ◽  
Ludwig Heinrich Pfenning ◽  
Flávia Rodrigues Alves Patrício

Bottom rot, caused by Rhizoctonia solani AG 1-IB, is an important disease affecting lettuce in Brazil, where its biological control with Trichoderma was not developed yet. The present study was carried out with the aim of selecting Trichoderma isolates to be used in the control of lettuce bottom rot. Forty-six Trichoderma isolates, obtained with baits containing mycelia of the pathogen, were evaluated in experiments carried out in vitro and in vivo in a greenhouse in two steps. In the laboratory, the isolates were evaluated for their capabilities of parasitizing and producing toxic metabolic substances that could inhibit the pathogen mycelial growth. In the first step of the in vivo experiments, the number and the dry weight of lettuce seedlings of the cultivar White Boston were evaluated. In the second step, 12 isolates that were efficient in the first step and showed rapid growth and abundant sporulation in the laboratory were tested for their capability of controlling bottom rot in two repeated experiments, and had their species identified. The majority of the isolates of Trichoderma spp. (76%) showed high capacity for parasitism and 50% of them produced toxic metabolites capable of inhibiting 60-100% of R. solani AG1-IB mycelial growth. Twenty-four isolates increased the number and 23 isolates increased the dry weight of lettuce seedlings inoculated with the pathogen in the first step of the in vivo experiments.In both experiments of the second step, two isolates of T. virens, IBLF 04 and IBLF 50, reduced the severity of bottom rot and increased the number and the dry weight of lettuce seedlings inoculated with R. solani AG1-IB. These isolates had shown a high capacity for parasitism and production of toxic metabolic substances, indicating that the in vitro and in vivo steps employed in the present study were efficient in selecting antagonists to be used for the control of lettuce bottom rot.


Zootaxa ◽  
2018 ◽  
Vol 4526 (4) ◽  
pp. 447
Author(s):  
REZA GHADERI ◽  
AKBAR KAREGAR ◽  
ESMAEIL MIRAEIZ

Trichotylenchus gorganiensis n. sp. is described and illustrated based on morphological and morphometric data. The new species is characterized by its 760–1073 µm long body, conoid-rounded lip region continuous with the body contour and bearing 5–7 fine striae, 22.0–24.5 µm long stylet, basal pharyngeal bulb offset or slightly overlapping intestine, post-anal sac extending 50–73 % of the tail region, and cylindrical or subclavate tail with a striated terminus. Differences of the new species from the closely related species T. astriatus, T. astriatoides, T. changlingensis and T. papyrus are discussed. Photomicrographs and several taxonomic notes on 13 other species of Telotylenchinae, collected from Iran, are provided. 


2021 ◽  
Vol 24 (2) ◽  
pp. 107-120
Author(s):  
SMN Islam ◽  
SS Siddique ◽  
MZH Chowdhury ◽  
NJ Mishu

A native Trichoderma isolate was collected from the agricultural soil of Gazipur. This isolate was identified as a Trichoderma asperellum through morphology and analysis of internal transcribed spacer (ITS) region of ribosomal RNA gene sequence and reconstruction of the phylogenetic tree. The antagonistic effects of the newly identified T. asperellum isolate were assessed against brinjal bacterial wilt caused by Ralstonia solanacearum both in vitro and in planta. Both qualitative and quantitative bioassays were conducted in vitro. For qualitative tests, dual culture and antibacterial activity were carried out, and pathogen growth was observed visually. The antagonism of T. asperellum cell free culture filtrate on the growth of R. solanacearum was conducted in a quantitative test. Successful antagonism was recorded after both in vitro qualitative tests. In addition, the lowest colony forming unit was recorded in 100% of CFC (2.4±0.51 ×103 cfu/ml) in quantitative test. The T. asperellum inoculated plant showed low disease incidence (13.33%) when seedlings were challenged with R. solanacearum in planta experiment. Disease incidence was 100% for seedlings when treated with only R. solanacearum. The results showed that the isolated and identified T. asperellum isolate suppressed R. solanacearum growth in vitro and protected the seedling from wilting in planta. Therefore, this isolate could be considered as a potential isolate. Ann. Bangladesh Agric. (2020) 24(2) : 107-120


Sign in / Sign up

Export Citation Format

Share Document