scholarly journals The B.1.427/1.429 (epsilon) SARS-CoV-2 variants are more virulent than ancestral B.1 (614G) in Syrian hamsters

2021 ◽  
Author(s):  
Timothy Carroll ◽  
Douglas Fox ◽  
Neeltje van Doremalen ◽  
Erin Ball ◽  
Mary Kate Morris ◽  
...  

As novel SARS-CoV-2 variants continue to emerge, it is critical that their potential to cause severe disease and evade vaccine-induced immunity is rapidly assessed in humans and studied in animal models. In early January 2021, a novel variant of concern (VOC) designated B.1.429 comprising 2 lineages, B.1.427 and B.1.429, was originally detected in California (CA) and shown to enhance infectivity in vitro and decrease antibody neutralization by plasma from convalescent patients and vaccine recipients. Here we examine the virulence, transmissibility, and susceptibility to pre-existing immunity for B 1.427 and B 1.429 in the Syrian hamster model. We find that both strains exhibit enhanced virulence as measured by increased body weight loss compared to hamsters infected with ancestral B.1 (614G), with B.1.429 causing the most body weight loss among all 3 lineages. Faster dissemination from airways to parenchyma and more severe lung pathology at both early and late stages were also observed with B.1.429 infections relative to B.1. (614G) and B.1.427 infections. In addition, subgenomic viral RNA (sgRNA) levels were highest in oral swabs of hamsters infected with B.1.429, however sgRNA levels in lungs were similar in all three strains. This demonstrates that B.1.429 replicates to higher levels than ancestral B.1 (614G) or B.1.427 in the upper respiratory tract (URT) but not in the lungs. In multi-virus in-vivo competition experiments, we found that epsilon (B.1.427/B.1.429) and gamma (P.1) dramatically outcompete alpha (B.1.1.7), beta (B.1.351) and zeta (P.2) in the lungs. In the URT gamma, and epsilon dominate, but the highly infectious alpha variant also maintains a moderate size niche. We did not observe significant differences in airborne transmission efficiency among the B.1.427, B.1.429 and ancestral B.1 (614G) variants in hamsters. These results demonstrate enhanced virulence and high relative fitness of the epsilon (B.1.427/B.1.429) variant in Syrian hamsters compared to an ancestral B.1 (614G) strain.

2021 ◽  
Author(s):  
Sreelekshmy Mohandas ◽  
Pragya D Yadav ◽  
Dimpal Nyayanit ◽  
Gururaj Deshpande ◽  
Anita Shete-Aich ◽  
...  

AbstractThe emergence of SARS-CoV-2 variants has posed a serious challenge to public health system and vaccination programs across the globe. We have studied the pathogenicity and virus shedding pattern of the SARS-CoV-2 VOC 202012/01 and compared with D614G variant in Syrian hamsters. VOC 202012/01 could produce disease in hamsters characterized by body weight loss and respiratory tract tropism but mild lung pathology. Further, we also documented that neutralizing antibodies developed against VOC 202012/01 could equally neutralize D614G variant. Higher load of VOC 202012/01 in the nasal wash specimens was observed during the first week of infection outcompeting the D614G variant. The findings suggest increased fitness of VOC 202012/01 to the upper respiratory tract which could lead to higher transmission. Further investigations are needed to understand the transmissibility of new variants.One-Sentence SummarySARS-CoV-2 VOC 202012/01 infected hamsters demonstrated high viral RNA shedding through the nasal secretions and significant body weight loss with mild lung pathology compared to the D614G variant.


2021 ◽  
Author(s):  
Zaigham Abbas Rizvi ◽  
Manas Ranjan Tripathy ◽  
Nishant Sharma ◽  
Sandeep Goswami ◽  
N Srikanth ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection initiates with viral entry in upper respiratory tract leading to coronavirus disease 2019 (Covid-19). Severe Covid-19 is characterized by pulmonary pathologies associated with respiratory failure. Thus, therapeutics aimed at inhibiting entry of the virus or its internalization in the upper respiratory tract, are of interest. Herein, we report the prophylactic application of two intra-nasal formulations provided by the National Medicinal Plant Board (NMPB), Anu oil and Til tailya in SARS-CoV2 infection hamster model. Prophylactic nasal instillation of these oil formulations exhibited reduced viral load in lungs, and resulted in reduced body weight loss and pneumonitis. In line with reduced viral load, histopathlogical analysis revealed a reduction in lung pathology in Anu oil group as compared to the control infected group. However, Til tailya group did not show a significant reduction in lung pathology. Furthermore, molecular analysis using mRNA expression profiling indicated reduced expression of pro-inflammatory cytokines genes, including Th1 and Th17 cytokines for both the intra-nasal formulations as a result of decreased viral load. Together, the prophylactic intra-nasal application of Annu oil seems to be useful in limiting both the viral load and disease severity disease in SARS-CoV2 infection in hamster model.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 824
Author(s):  
Nora M. Gerhards ◽  
Jan B. W. J. Cornelissen ◽  
Lucien J. M. van Keulen ◽  
José Harders-Westerveen ◽  
Rianka Vloet ◽  
...  

In assessing species susceptibility for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and in the search for an appropriate animal model, multiple research groups around the world inoculated a broad range of animal species using various SARS-CoV-2 strains, doses and administration routes. Although in silico analyses based on receptor binding and diverse in vitro cell cultures were valuable, exact prediction of species susceptibility based on these tools proved challenging. Here, we assessed whether precision-cut lung slices (PCLS) could facilitate the selection of animal models, thereby reducing animal experimentation. Pig, hamster and cat PCLS were incubated with SARS-CoV-2 and virus replication was followed over time. Virus replicated efficiently in PCLS from hamsters and cats, while no evidence of replication was obtained for pig PCLS. These data corroborate the findings of many research groups that have investigated the susceptibility of hamsters, pigs and cats towards infection with SARS-CoV-2. Our findings suggest that PCLS can be used as convenient tool for the screening of different animal species for sensitivity to newly emerged viruses. To validate our results obtained in PCLS, we employed the hamster model. Hamsters were inoculated with SARS-CoV-2 via the intranasal route. Susceptibility to infection was evaluated by body weight loss, viral loads in oropharyngeal swabs and respiratory tissues and lung pathology. The broadly used hamster model was further refined by including activity tracking of the hamsters by an activity wheel as a very robust and sensitive parameter for clinical health. In addition, to facilitate the quantification of pathology in the lungs, we devised a semi-quantitative scoring system for evaluating the degree of histological changes in the lungs. The inclusion of these additional parameters refined and enriched the hamster model, allowing for the generation of more data from a single experiment.


1968 ◽  
Vol 54 (5) ◽  
pp. 361-368
Author(s):  
Giorgio Cittadini ◽  
Tommaso De Cata ◽  
Carlo Gubinelli

ATPC+ ascites tumor transplants of different size were performed in NMRI mice. Hematoporphyrin chlorhydrate (Hp) was administered i.p. once daily during the seven days following transplantation. In the first series « in vivo » (1.9 x 106 cells; 0.1, 0.3, 0.9 mg of Hp), body weight, ascitogenic time (Tasc) and total ascitic volume (TV) were determined. Hematoporphyrin-treated animals showed, after the apprearance of the ascites, a body weight loss superior to controls, due to the drug toxicity caused by Hp vs. ascitic fluid interaction. Neither Tasc nor TV were significantly modified. In the second series « in vivo » (2.3 x 104 or 2.3 x 102 cells; 0.3 mg Hp), body weight loss was lower, Tasc was significantly increased and also the survival varied. In a third experiment ATPC+ cells were incubated « in vitro » with Hp in a range from 102 to 108 molecules/cell). No effect was observed on growth rate when the cells were transplanted into the host.


2012 ◽  
Vol 56 (8) ◽  
pp. 4375-4380 ◽  
Author(s):  
Yacine Abed ◽  
Andrés Pizzorno ◽  
Guy Boivin

ABSTRACTThe therapeutic activity of intramuscular (IM) peramivir was evaluated in mice infected with a recombinant influenza A/WSN/33 virus containing the H275Y neuraminidase (NA) mutation known to confer oseltamivir resistance. Regimens consisted of single (90 mg/kg of body weight) or multiple (45 mg/kg daily for 5 days) IM peramivir doses that were initiated 24 h or 48 h postinfection (p.i.). An oral oseltamivir regimen (1 or 10 mg/kg daily for 5 days) was used for comparison. Untreated animals had a mortality rate of 75% and showed a mean weight loss of 16.9% on day 5 p.i. When started at 24 h p.i., both peramivir regimens prevented mortality and significantly reduced weight loss (P< 0.001) and lung viral titers (LVT) (P< 0.001). A high dose (10 mg/kg) of oseltamivir initiated at 24 h p.i. also prevented mortality and significantly decreased weight loss (P< 0.05) and LVT (P< 0.001) compared to the untreated group results. In contrast, a low dose (1 mg/kg) of oseltamivir did not show any benefits. When started at 48 h p.i., both peramivir regimens prevented mortality and significantly reduced weight loss (P< 0.01) and LVT (P< 0.001) whereas low-dose or high-dose oseltamivir regimens had no effect on mortality rates, body weight loss, and LVT. Our results show that single-dose and multiple-dose IM peramivir regimens retain clinical and virological activities against the A/H1N1 H275Y variant despite some reduction in susceptibility when assessedin vitrousing enzymatic assays. IM peramivir could constitute an alternative for treatment of oseltamivir-resistant A/H1N1 infections, although additional studies are warranted to support such a recommendation.


2005 ◽  
Vol 288 (4) ◽  
pp. G621-G629 ◽  
Author(s):  
Paola Brun ◽  
Cristina Mastrotto ◽  
Elisa Beggiao ◽  
Annalisa Stefani ◽  
Luisa Barzon ◽  
...  

Because neurotensin (NT) and its high-affinity receptor (NTR1) modulate immune responses, chloride secretion, and epithelial cell proliferation, we sought to investigate their role in the repair process that follows the development of mucosal injuries during a persistent inflammation. Colonic NT and NTR1, mRNA, and protein significantly increased only after dextran sodium sulfate (DSS)-induced inflammatory damage developed. Colitis-induced body weight loss, colonic myeloperoxidase activity, and histological damage were significantly enhanced by SR-48642 administration, a nonpeptide NTR1 antagonist, whereas continuous NT infusion ameliorated colitis outcome. To evaluate the NT and NTR1 role in tissue healing, mucosal inflammatory injury was established administering 3% DSS for 5 days. After DSS discontinuation, mice rapidly gained weight, ulcers were healed, and colonic NT, NTR1, and cyclooxygenase (COX)-2 mRNA levels were upregulated, whereas SR-48642 treatment caused a further body weight loss, ulcer enlargement, and a blunted colonic COX-2 mRNA upregulation. In a wound-healing model in vitro, NT-induced cell migration in the denuded area was inhibited by indomethacin but not by an antitransforming growth factor-β neutralizing antibody. Furthermore, NT significantly increased COX-2 mRNA levels by 2.4-fold and stimulated PGE2 release in HT-29 cells. These findings suggest that NT and NTR1 are part of the network activated after mucosal injuries and that NT stimulates epithelial restitution at least, in part, through a COX-2 dependent pathway.


2021 ◽  
Author(s):  
Kathryn A Ryan ◽  
Robert J Watson ◽  
Kevin R Bewley ◽  
Christopher A Burton ◽  
Oliver Carnell ◽  
...  

The mutation profile of the SARS-CoV-2 Omicron variant poses a concern for naturally acquired and vaccine-induced immunity. We investigated the ability of prior infection with an early SARS-CoV-2, 99.99% identical to Wuhan-Hu-1, to protect against disease caused by the Omicron variant. We established that infection with Omicron in naive Syrian hamsters resulted in a less severe disease than a comparable dose of prototype SARS-CoV-2 (Australia/VIC01/2020), with fewer clinical signs and less weight loss. We present data to show that these clinical observations were almost absent in convalescent hamsters challenged with the same dose of Omicron 50 days after an initial infection with Australia/VIC01/2020. The data provide evidence for immunity raised against prototype SARS-CoV-2 being protective against Omicron in the Syrian hamster model. Further investigation is required to conclusively determine whether Omicron is less pathogenic in Syrian hamsters and whether this is predictive of pathogenicity in humans.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zaigham Abbas Rizvi ◽  
Manas Ranjan Tripathy ◽  
Nishant Sharma ◽  
Sandeep Goswami ◽  
N Srikanth ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection initiates with viral entry in the upper respiratory tract, leading to coronavirus disease 2019 (COVID-19). Severe COVID-19 is characterized by pulmonary pathologies associated with respiratory failure. Thus, therapeutics aimed at inhibiting the entry of the virus or its internalization in the upper respiratory tract are of interest. Herein, we report the prophylactic application of two intranasal formulations provided by the National Medicinal Plant Board (NMPB), Anu oil and til tailya, in the hamster model of SARS-CoV-2 infection. Prophylactic intra-nasal instillation of these oil formulations exhibited reduced viral load in lungs and resulted in reduced body weight loss and lung-pneumonitis. In line with reduced viral load, histopathological analysis revealed a reduction in lung pathology in the Anu oil group as compared to the control infected group. However, the til tailya group did not show a significant reduction in lung pathology. Furthermore, molecular analysis using mRNA expression profiling indicated reduced expression of pro-inflammatory cytokine genes, including Th1 and Th17 cytokines for both the intranasal formulations as a result of decreased viral load. Together, the prophylactic intranasal application of Anu oil seems to be useful in limiting both viral load and severity in SARS-CoV2 infection in the hamster model.


Sign in / Sign up

Export Citation Format

Share Document