Network analysis outlines strengths and weaknesses of emerging SARS-CoV-2 Spike variants

2021 ◽  
Author(s):  
Pedro D Manrique ◽  
Srirupa Chakraborty ◽  
Kien Nguyen ◽  
Rachael Mansbach ◽  
Bette Korber ◽  
...  

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has triggered myriad efforts to dissect and understand the structure and dynamics of this complex pathogen. The Spike glycoprotein of SARS-CoV-2 has received special attention as it is the means by which the virus enters the human host cells. The N-terminal domain (NTD) is one of the targeted regions of the Spike protein for therapeutics and neutralizing antibodies against COVID-19. Though its function is not well-understood, the NTD is reported to acquire mutations and deletions that can accelerate the evolutionary adaptation of the virus driving antibody escape. Cellular processes are known to be regulated by complex interactions at the molecular level, which can be characterized by means of a graph representation facilitating the identification of key residues and critical communication pathways within the molecular complex. From extensive all-atom molecular dynamics simulations of the entire Spike for the wild-type and the dominant variant, we derive a weighted graph representation of the protein in two dominant conformations of the receptor-binding-domain; all-down and one-up. We implement graph theory techniques to characterize the relevance of specific residues at facilitating roles of communication and control, while uncovering key implications for fitness and adaptation. We find that many of the reported high-frequency mutations tend to occur away from the critical residues highlighted by our graph theory analysis, implying that these mutations tend to avoid targeting residues that are most critical for protein allosteric communication. We propose that these critical residues could be candidate targets for novel antibody therapeutics. In addition, our analysis provides quantitative insights of the critical role of the NTD and furin cleavage site and their wide-reaching influence over the protein at large. Many of our conclusions are supported by empirical evidence while others point the way towards crucial simulation-guided experiments.


2021 ◽  
Author(s):  
Felipe Gomes Naveca ◽  
Valdinete Nascimento ◽  
Victor Souza ◽  
André de Lima Corado ◽  
Fernanda Nascimento ◽  
...  

SummaryThe Amazonas was one of the most heavily affected Brazilian states by the COVID-19 epidemic. Despite a large number of infected people, particularly during the second wave associated with the spread of the Variant of Concern (VOC) Gamma (lineage P.1), SARS-CoV-2 continues to circulate in the Amazonas. To understand how SARS-CoV-2 persisted in a human population with a high immunity barrier, we generated 1,188 SARS-CoV-2 whole-genome sequences from individuals diagnosed in the Amazonas state from 1st January to 6th July 2021, of which 38 were vaccine breakthrough infections. Our study reveals a sharp increase in the relative prevalence of Gamma plus (P.1+) variants, designated as Pango Lineages P.1.3 to P.1.6, harboring two types of additional Spike changes: deletions in the N-terminal (NTD) domain (particularly Δ144 or Δ141-144) associated with resistance to anti-NTD neutralizing antibodies or mutations at the S1/S2 junction (N679K or P681H) that probably enhance the binding affinity to the furin cleavage site, as suggested by our molecular dynamics simulations. As lineages P.1.4 (S:N679K) and P.1.6 (S:P681H) expanded (Re > 1) from March to July 2021, the lineage P.1 declined (Re < 1) and the median Ct value of SARS-CoV-2 positive cases in Amazonas significantly decreases. Still, we found no overrepresentation of P.1+ variants among breakthrough cases of fully vaccinated patients (71%) in comparison to unvaccinated individuals (93%). This evidence supports that the ongoing endemic transmission of SARS-CoV-2 in the Amazonas is driven by the spread of new local Gamma/P.1 sub-lineages that are more transmissible, although not more efficient to evade vaccine-elicited immunity than the parental VOC. Finally, as SARS-CoV-2 continues to spread in human populations with a declining density of susceptible hosts, the risk of selecting new variants with higher infectivity are expected to increase.



Author(s):  
Alexandra C. Walls ◽  
Young-Jun Park ◽  
M. Alexandra Tortorici ◽  
Abigail Wall ◽  
Andrew T. McGuire ◽  
...  

SUMMARYThe recent emergence of a novel coronavirus associated with an ongoing outbreak of pneumonia (Covid-2019) resulted in infections of more than 72,000 people and claimed over 1,800 lives. Coronavirus spike (S) glycoprotein trimers promote entry into cells and are the main target of the humoral immune response. We show here that SARS-CoV-2 S mediates entry in VeroE6 cells and in BHK cells transiently transfected with human ACE2, establishing ACE2 as a functional receptor for this novel coronavirus. We further demonstrate that the receptor-binding domains of SARS-CoV-2 S and SARS-CoV S bind with similar affinities to human ACE2, which correlates with the efficient spread of SARS-CoV-2 among humans. We found that the SARS-CoV-2 S glycoprotein harbors a furin cleavage site at the boundary between the S1/S2 subunits, which is processed during biogenesis and sets this virus apart from SARS-CoV and other SARS-related CoVs. We determined a cryo-electron microscopy structure of the SARS-CoV-2 S ectodomain trimer, demonstrating spontaneous opening of the receptor-binding domain, and providing a blueprint for the design of vaccines and inhibitors of viral entry. Finally, we demonstrate that SARS-CoV S murine polyclonal sera potently inhibited SARS-CoV-2 S-mediated entry into target cells, thereby indicating that cross-neutralizing antibodies targeting conserved S epitopes can be elicited upon vaccination.



2016 ◽  
Vol 113 (42) ◽  
pp. 11931-11936 ◽  
Author(s):  
Wenqian He ◽  
Gene S. Tan ◽  
Caitlin E. Mullarkey ◽  
Amanda J. Lee ◽  
Mannie Man Wai Lam ◽  
...  

The generation of strain-specific neutralizing antibodies against influenza A virus is known to confer potent protection against homologous infections. The majority of these antibodies bind to the hemagglutinin (HA) head domain and function by blocking the receptor binding site, preventing infection of host cells. Recently, elicitation of broadly neutralizing antibodies which target the conserved HA stalk domain has become a promising “universal” influenza virus vaccine strategy. The ability of these antibodies to elicit Fc-dependent effector functions has emerged as an important mechanism through which protection is achieved in vivo. However, the way in which Fc-dependent effector functions are regulated by polyclonal influenza virus-binding antibody mixtures in vivo has never been defined. Here, we demonstrate that interactions among viral glycoprotein-binding antibodies of varying specificities regulate the magnitude of antibody-dependent cell-mediated cytotoxicity induction. We show that the mechanism responsible for this phenotype relies upon competition for binding to HA on the surface of infected cells and virus particles. Nonneutralizing antibodies were poor inducers and did not inhibit antibody-dependent cell-mediated cytotoxicity. Interestingly, anti-neuraminidase antibodies weakly induced antibody-dependent cell-mediated cytotoxicity and enhanced induction in the presence of HA stalk-binding antibodies in an additive manner. Our data demonstrate that antibody specificity plays an important role in the regulation of ADCC, and that cross-talk among antibodies of varying specificities determines the magnitude of Fc receptor-mediated effector functions.



Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2266-2266
Author(s):  
Randolph B Lyde ◽  
Li Zhai ◽  
Karen Vo ◽  
Danuta Jadwiga Jarocha ◽  
Spencer Sullivan ◽  
...  

Abstract We and others have shown that FVIII expressed ectopically in platelets (pFVIII) is stored in α-granules, released at sites of vascular injury and restores hemostasis in FVIIInull mice, even in the presence of neutralizing antibodies to FVIII. These studies support the concept that unlike therapeutic interventions that correct plasma FVIII, pFVIII may be a useful therapy in hemophilia A with intractable inhibitors and significant bleeds. We have also demonstrated this approach has several limitations that may make pFVIII gene therapy bone marrow transplantation (BMT) strategies problematic: 1) pFVIII is not equivalent to plasma FVIII and its efficacy in joint and intracranial bleeds has yet to be shown, especially in the presence of inhibitors, and 2) pFVIII expressed during megakaryopoiesis can cause injury to the Mks, potentially exacerbating post-BMT thrombocytopenia. We propose an alternative strategy: interval prophylactic infusions of FVIII-containing platelets generated from patient-specific iMks expressing either human B-domain-deleted (BDD) FVIII or variants of this FVIII that have greater stability and longer half-lives; making them especially efficacious as pFVIII as we previously demonstrated. iPSCs are a renewable source of cells that can be pre-screened prior to clinical usage for lines that express optimal levels of pFVIII and also release optimal numbers of platelets after differentiation into iMks. Such iPSCs were transfected with a self-inactivating lentivirus containing cDNA for one of three FVIII variants: wildtype BDD FVIII (WT FVIII), R1645H PACE/furin cleavage site FVIII (FVIIIR1645H), and amino acid 1645 to 1648 deletion FVIII (FVIIIΔ). FVIIIR1645H and FVIIIΔ show greater stability and consequently greater specific activity with no increase in injuring Mks. All FVIII variants were expressed using the MK-specific Cxcl4 promoter and were shown to be effective in several bleeding models in FVIIInull mice. Differentiated and transduced iMKs were analyzed for RNA and protein expression. All of the FVIII variant iMKs expressed at least forty-fold higher levels of mRNA compared to the non-transduced control (n=6) and protein was expressed at >550 pg/106 CD42b+ iMKs (n=6). Transduced MKs released FVIII into the supernatant when activated by thrombin showing the pFVIII was likely stored in α-granules. Annexin staining was the same between FVIII-expressing iMKs and control iMks suggesting that the level of pFVIII did not cause the iMks to become apoptotic. To test the ability of FVIII-expressing iMKs to correct the coagulopathy in hemophilia A, 5x105 iMKs were added to FVIIInull murine whole blood and evaluated for clot formation using rotational thromboelastometry (ROTEM). Each FVIII variant showed a decrease in clotting time, clot formation time, and an increase in maximum clot firmness when compared to the non-transduced control (n=4). These data show that iMKs expressing FVIII variants can improve hemostasis in a whole blood clotting assay. Our next goal is to generate sufficient platelets from these iMKs to test for correction of the bleeding diathesis in immunodeficient FVIIInull mice and to determine their efficacy in improving hemostasis in a number of clinically relevant hemostatic models. Disclosures Arruda: Pfizer: Consultancy, Patents & Royalties, Research Funding; Spark Therapeutics: Patents & Royalties. Camire:Pfizer: Consultancy, Patents & Royalties, Research Funding; NovoNordisk: Research Funding; Spark Therapeutics: Membership on an entity's Board of Directors or advisory committees.



2021 ◽  
Vol 17 (11) ◽  
pp. e1009820
Author(s):  
Hataf Khan ◽  
Helena Winstone ◽  
Jose M. Jimenez-Guardeño ◽  
Carl Graham ◽  
Katie J. Doores ◽  
...  

Interferons play a critical role in regulating host immune responses to SARS-CoV-2, but the interferon (IFN)-stimulated gene (ISG) effectors that inhibit SARS-CoV-2 are not well characterized. The IFN-inducible short isoform of human nuclear receptor coactivator 7 (NCOA7) inhibits endocytic virus entry, interacts with the vacuolar ATPase, and promotes endo-lysosomal vesicle acidification and lysosomal protease activity. Here, we used ectopic expression and gene knockout to demonstrate that NCOA7 inhibits infection by SARS-CoV-2 as well as by lentivirus particles pseudotyped with SARS-CoV-2 Spike in lung epithelial cells. Infection with the highly pathogenic, SARS-CoV-1 and MERS-CoV, or seasonal, HCoV-229E and HCoV-NL63, coronavirus Spike-pseudotyped viruses was also inhibited by NCOA7. Importantly, either overexpression of TMPRSS2, which promotes plasma membrane fusion versus endosomal fusion of SARS-CoV-2, or removal of Spike’s polybasic furin cleavage site rendered SARS-CoV-2 less sensitive to NCOA7 restriction. Collectively, our data indicate that furin cleavage sensitizes SARS-CoV-2 Spike to the antiviral consequences of endosomal acidification by NCOA7, and suggest that the acquisition of furin cleavage may have favoured the co-option of cell surface TMPRSS proteases as a strategy to evade the suppressive effects of IFN-induced endo-lysosomal dysregulation on virus infection.



Author(s):  
Kirill V. Kalnin ◽  
Timothy Plitnik ◽  
Michael Kishko ◽  
Jinrong Zhang ◽  
Donghui Zhang ◽  
...  

SummaryAn effective vaccine to address the global pandemic of coronavirus disease 2019 (COVID-19) is an urgent public health priority1. Novel synthetic mRNA and vector-based vaccine technologies offer an expeditious development path alternative to traditional vaccine approaches. Here we describe the efforts to utilize an mRNA platform for rational design and evaluations of mRNA vaccine candidates based on Spike (S) glycoprotein of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus causing COVID-19. Several mRNA constructs expressing various structural conformations of S-protein, including wild type (WT), a pre-fusion stabilized mutant (2P), a furin cleavage-site mutant (GSAS) and a double mutant form (2P/GSAS), were tested in a preclinical animal model for their capacity to elicit neutralizing antibodies (nAbs). The lead 2P/GSAS candidate was further assessed in dose-ranging studies in mice and Cynomolgus macaques. The selected 2P/GSAS vaccine formulation, now designated MRT5500, elicited potent nAbs as measured in two types of neutralization assays. In addition, MRT5500 elicited TH1-biased responses in both mouse and non-human primate species, a result that helps to address a hypothetical concern regarding potential vaccine-associated enhanced respiratory diseases associated with TH2-biased responses. These data position MRT5500 as a viable vaccine candidate for clinical development against COVID-19.



2014 ◽  
Vol 89 (5) ◽  
pp. 2866-2874 ◽  
Author(s):  
Mayim E. Wiens ◽  
Jason G. Smith

ABSTRACTHuman papillomavirus (HPV) is a significant oncogenic virus, but the innate immune response to HPV is poorly understood. Human α-defensin 5 (HD5) is an innate immune effector peptide secreted by epithelial cells in the genitourinary tract. HD5 is broadly antimicrobial, exhibiting potent antiviral activity against HPV at physiologic concentrations; however, the specific mechanism of HD5-mediated inhibition against HPV is unknown. During infection, the HPV capsid undergoes several critical cell-mediated viral protein processing steps, including unfolding and cleavage of the minor capsid protein L2 by host cyclophilin B and furin. Using HPV16 pseudovirus, we show that HD5 interacts directly with the virus and inhibits the furin-mediated cleavage of L2 at the cell surface during infection at a step downstream of the cyclophilin B-mediated unfolding of L2. Importantly, HD5 does not affect the enzymatic activity of furin directly. Thus, our data support a model in which HD5 prevents furin from accessing L2 by occluding the furin cleavage site via direct binding to the viral capsid.IMPORTANCEOur study elucidates a new antiviral action for α-defensins against nonenveloped viruses in which HD5 directly interferes with a critical host-mediated viral processing step, furin cleavage of L2, at the cell surface. Blocking this key event has deleterious effects on the intracellular steps of virus infection. Thus, in addition to informing the antiviral mechanisms of α-defensins, our studies highlight the critical role of furin cleavage in HPV entry. Innate immune control, mediated in part by α-defensins expressed in the genital mucosa, may influence susceptibility to HPV infections that lead to cervical cancer. Moreover, understanding the mechanism of these natural antivirals may inform the design of therapeutics to limit HPV infection.



Author(s):  
Lynda J. Partridge ◽  
Lucy Urwin ◽  
Martin J.H. Nicklin ◽  
David C. James ◽  
Luke R. Green ◽  
...  

AbstractThe SARS-CoV-2 spike protein is known to bind to the receptor, ACE2, on the surface of target cells. The spike protein is processed by membrane proteases, including TMPRSS2, and either internalises or fuses directly with the cell, leading to infection. We have identified a human cell line that expresses both ACE2 and TMPRSS2, the RT4 urinary bladder transitional carcinoma, and used it to develop a proxy assay for viral interactions with host cells. A tagged recombinant form of the spike protein, containing both the S1 and S2 domains, interacted strongly with RT4 cells as determined by flow cytometry, whereas the S1 domain and the receptor binding domain (RBD) interacted weakly. S1S2 interaction was temperature dependent and increased sharply at 37°C, suggesting that processing of the intact spike protein is likely to be important in the interaction. S1S2 protein could associate with cells with a low dependence on ACE2 expression, while RBD required the presence of ACE2 for interaction. As the spike protein has previously been shown to bind heparin, a soluble glycosaminoglycan, we used a flow cytometric assay to determine the effect of heparin on spike protein interaction with RT4 cells. Unfractionated heparin inhibited spike protein interaction with an IC50 value of <0.05U/ml whereas two low molecular weight heparins were much less effective. A mutant form of the spike protein, lacking the Arg-rich region proposed to be a furin cleavage site, interacted very weakly with cells and had a lower affinity for unfractionated and lower molecular weight heparin than the wild type spike protein. This indicates that the furin cleavage site might also be a heparin binding site and potentially important in interactions with host cells. Taken together, our data suggest that heparin, particularly unfractionated forms, could be considered to reduce clinical manifestations of COVID-19 by inhibiting continuing viral infection.Author SummarySince the emergence of SARS-CoV-2 in 2019, the world has faced a vast public health crisis. SARS-CoV-2 associates with human cells through interaction of the viral spike protein with the host receptor, ACE2. In the absence of a vaccine, new treatments are required to reduce the morbidity and mortality of SARS-CoV-2. Here, we use a novel technique to demonstrate spike protein interactions with human cells with low levels of ACE2 at the cell surface, suggesting a secondary receptor. We demonstrate the importance of a new heparin-binding site within the viral spike protein for these interactions. We also found that unfractionated heparin was able to bind to the viral spike protein and therefore, potently inhibit viral spike protein interactions with human cells. Our data demonstrate that ACE2 is not absolutely required for spike protein interactions with human cells and furthermore, that unfractionated heparin should be considered as a treatment to reduce SARS-CoV-2 viral infection.



2021 ◽  
Vol 14 (1) ◽  
pp. 1-12
Author(s):  
Yuanchen Ma ◽  
Yinong Huang ◽  
Tao Wang ◽  
Andy Peng Xiang ◽  
Weijun Huang

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a lineage B coronavirus, causing the worldwide outbreak of Corona Virus Disease 2019 (COVID-19). Despite genetically closed to SARS-CoV, SARS-CoV-2 seems to possess enhanced infectivity and subtle different clinical features, which may hamper the early screening of suspected patients as well as the control of virus transmission. Unfortunately, there are few tools to predict the potential target organ damage and possible clinical manifestations caused by such novel coronavirus. Methods: To solve this problem, we use the online single-cell sequence datasets to analyze the expression of the major receptor in host cells that mediates the virus entry, including angiotensin converting enzyme 2 (ACE2), and its co-expressed membrane endopeptidases. Results: The results indicated the differential expression of ADAM10 and ADAM17 might contribute to the ACE2 shedding and affect the membrane ACE2 abundance. We further confirm a putative furin-cleavage site reported recently in the spike protein of SARS-CoV-2, which may facilitate the virus-cell fusion. Based on these findings, we develop an approach that comprehensively analyzed the virus receptor expression, ACE2 shedding, membrane fusion activity, virus uptake and virus replication to evaluate the infectivity of SARS-CoV-2 to different human organs. Conclusion: Our results indicate that, in addition to airway epithelia, cardiac tissue and enteric canals are susceptible to SARS-CoV-2 as well.



2006 ◽  
Vol 87 (6) ◽  
pp. 1659-1667 ◽  
Author(s):  
J.-F. Valarcher ◽  
J. Furze ◽  
S. G. Wyld ◽  
R. Cook ◽  
G. Zimmer ◽  
...  

The BRSV fusion (F) protein is cleaved at two furin consensus sequence sites, resulting in the generation of disulphide-linked F1 and F2 subunits and the release of an intervening peptide of 27 amino acids (pep27), which is converted into a biologically active tachykinin (virokinin). The role of the virokinin and the importance of one of the furin cleavage sites, FCS-2 [RA(R/K)R109], in the pathogenesis of BRSV infection and in the subsequent development of immunity was studied in gnotobiotic calves infected with a recombinant BRSV (rBRSV) lacking pep27 (rBRSVΔp27) or with rBRSV108/109, which contains two amino acid substitutions in FCS-2 (RANN109). Although replication of the mutant viruses and the parental wild-type (WT) rBRSV in the lungs was similar, the extent of gross and microscopic lesions induced by the mutant viruses was less than that induced by WT rBRSV. Furthermore, the numbers of eosinophils in the lungs of calves infected with the mutant viruses were significantly less than that in calves infected with WT virus. These observations suggest a role for the virokinin in the pathogenesis of BRSV infection. Following mucosal immunization with rBRSVΔp27, the levels of BRSV-specific serum antibodies were similar to those induced by WT virus. In contrast, the level of neutralizing antibodies induced by rBRSV108/109 was 10-fold lower than that induced by WT virus. Nevertheless, resistance to BRSV challenge induced by the mutant and WT viruses was similar, suggesting that neither pep27 nor FCS-2 plays a major role in the induction of protective immunity.



Sign in / Sign up

Export Citation Format

Share Document